最小的合数是几?

 ...   展开
 我来答
胖憨憨77
高粉答主

2021-08-24 · 关注我不会让你失望
知道小有建树答主
回答量:710
采纳率:100%
帮助的人:10.4万
展开全部

最小的合数是4。

合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。自然数从0开始:0和1既不是质数也不是合数;2和3都只有1和它本身一个因数,因此不是合数;4有1、2、4共计3个因数,因此,4是最小的合数。

质数(prime number)又称素数,有无限个。

质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,

娱乐我知晓哟

2021-07-08 · 专注各种娱乐,欢迎一起探讨
娱乐我知晓哟
采纳数:1346 获赞数:1000210

向TA提问 私信TA
展开全部

最小的合数是4。合数的一种方法为计算其质因数的个数。只有1和它本身两个因数的自然数,叫质数(或称素数)。

(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个因数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)


相关

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。

任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积,这里P1<P2<...<Pn是质数,其诸方幂ai是正整数。

这样的分解称为N的标准分解式。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
纵横竖屏
2020-09-18 · TA获得超过46.7万个赞
知道小有建树答主
回答量:164
采纳率:93%
帮助的人:7.4万
展开全部

合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。

最小的合数是4。

性质

1,所有大于2的偶数都是合数。

2,所有大于5的奇数中,个位为5的都是合数。

3,除0以外,所有个位为0的自然数都是合数。

4,所有个位为4,6,8的自然数都是合数。

5,最小的(偶)合数为4,最小的奇合数为9。

6,每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)

扩展资料:

类型

合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对于后者,  

(其中μ为默比乌斯函数且''x''为质因数个数的一半),而前者则为 

注意,对于质数,此函数会传回 -1,且  。而对于有一个或多个重复质因数的数字''n'',

 。

另一种分类合数的方法为计算其因数的个数。所有的合数都至少有三个因数。一质数的平方数,其因数有  

。一数若有著比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。

合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。

参考资料:百度百科---合数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2021-07-05 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:158万
展开全部

最小的合数是4。

解析:

合数则是在分解因数时,除了自身和1以外,还有其他的因数:4=1*4;4+2*2;而1,既不是质数,也不是合数。理由很简单,如果把1算作是质数,那么在分解质因数时就会发生下面的情况:

8=2*2*2;

8=2*2*2*1

8=2*2*2*1*1

这样反而不利于我们进行质数的研究。所以,1不是质数,而按照合数的定义,1=1*1,也没有除了1以外的因数。所以,1也不是合数。按照质数数表,2,3,之后,就是合数4。

性质

所有大于2的偶数都是合数。

所有大于5的奇数中,个位为5的都是合数。

除0以外,所有个位为0的自然数都是合数。

所有个位为4,6,8的自然数都是合数。

最小的(偶)合数为4,最小的奇合数为9。

每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)

以上内容参考:百度百科-合数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吐血也要抽烟
2020-09-18 · TA获得超过2.6万个赞
知道小有建树答主
回答量:111
采纳率:0%
帮助的人:5.4万
展开全部

合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。

与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。

最小的(偶)合数为4,最小的奇合数为9。

所有大于2的偶数都是合数。

所有大于5的奇数中,个位为5的都是合数。

除0以外,所有个位为0的自然数都是合数。

所有个位为4,6,8的自然数都是合数。

最小的(偶)合数为4,最小的奇合数为9。

每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)

对任一大于5的合数(威尔逊定理):

扩展资料:

合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对于后者,  

(其中μ为默比乌斯函数且''x''为质因数个数的一半),而前者则为 

另一种分类合数的方法为计算其因数的个数。所有的合数都至少有三个因数。一质数的平方数,其因数有  。

一数若有著比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。

合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。

参考资料:百度百科——合数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(21)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式