参数方程。

参数方程。第二问,五分之根号五怎么化为五分之二倍根号五... 参数方程。第二问,五分之根号五怎么化为五分之二倍根号五 展开
 我来答
帐号已注销
2021-07-05 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:159万
展开全部

参数方程是X=Acosa,Y=Bsina。此式与两点距离联系管用,它把两个未知量XY合成一个,而且三角函数是有界性的。具体还需要积累经验的。

在空间R的球面的方程为参数方程为如果圆心为(a,b,c),半径为R,则表示为:(x-a)2+(y-b)2+(z-c)2=R2

也可表示为参数方程,u,v为参数:x=a+Rcosuy=b+Rsinucosvz=c+Rsinusinv(0≤θ≤2π,0≤φ≤π)

应用

如果函数f(x)及F(x)满足:

⑴在闭区间[a,b]上连续;

⑵在开区间(a,b)内可导;

⑶对任一x∈(a,b),F'(x)≠0。

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。

以上内容参考:百度百科-参数方程

小阳同学
2021-07-05 · 知道合伙人教育行家
小阳同学
知道合伙人教育行家
采纳数:10 获赞数:30108
江苏省高等数学竞赛二等奖

向TA提问 私信TA
展开全部

参数方程,为数学术语,其和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。

并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程即称为普通方程。

参数方程

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2] 

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数

或者x=x'+ut,  y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
逆徒cW
2018-10-11 · TA获得超过3733个赞
知道大有可为答主
回答量:5467
采纳率:31%
帮助的人:367万
展开全部
球体的参数方程:被球面紧贴包围的立体称为球体,简称球。在空间R的球面的方程为参数方程为如果圆心为(a, b, c),半径为R,则表示为: (x-a)2+(y-b)2+(z-c)2=R2 也可表示为参数方程,u,v为参数: x=a+Rcosu y=b+Rsinucosv z=c+Rsinusinv (0≤θ≤2π,0≤φ≤π)在解析几何,球是中心在(x0,y0,z0),半径是r的所有点(x, y, z)的集合: (x-x0)2+(y-y0)2+(z-z0)2=r2 使用极坐标来表示半径为r的球面: x=x0+r sinθcosφ y=y0+r sinθsinφ z=z0+r cosθ (θ的取值范围:0≤θ≤ n 和 -∏<φ≤∏) 圆的参数方程: (x+a)^2+(y+b)^2 = r^2 (a,b)为圆心,r为半径。参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宁静致远田aa
高粉答主

2020-02-21 · 每个回答都超有意思的
知道答主
回答量:12.5万
采纳率:3%
帮助的人:5983万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沁小樱T
2020-10-05 · TA获得超过13.8万个赞
知道答主
回答量:6969
采纳率:37%
帮助的人:469万
展开全部

参数方程是什么?

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式