求积分,要详细的过程
2个回答
展开全部
1/π∫[-π,π]xsin2xdx
=1/2π∫[-π,π]xsin2xd2x
=-1/2π∫[-π,π]xdcos2x
=-1/2π xcos2x[-π,π]+1/2π ∫[-π,π]cos2xdx
=-1/2π [πcos2π-(-π)cos(-2π)]+1/4π ∫[-π,π]cos2xd2x
=-1/2π[2π]+1/4π sin2x[-π,π]
=-1/2 + 1/4π[sin2π-sin(-2π)]
=-1/2 + 0
=-1/2
=1/2π∫[-π,π]xsin2xd2x
=-1/2π∫[-π,π]xdcos2x
=-1/2π xcos2x[-π,π]+1/2π ∫[-π,π]cos2xdx
=-1/2π [πcos2π-(-π)cos(-2π)]+1/4π ∫[-π,π]cos2xd2x
=-1/2π[2π]+1/4π sin2x[-π,π]
=-1/2 + 1/4π[sin2π-sin(-2π)]
=-1/2 + 0
=-1/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询