3个回答
展开全部
通解不说了,运用特征方程很容易解出来。由等式右边的形式,设微分方程的一个特解为y*=at+b 则(y*)'=a,(y*)''=0,代入微分方程,得0-2a+at+b=t (a-1)t+(b-2a)=0 a-1=0,b-2a=0 解得a=1,b=2,微分方程的特解为y*=t+2 t+2就是这么来的。
追问
????
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
通解y=Ce^x,把C换成u,y'=u'e^x+ue^x
y'-y=u'e^x=-sinx
u'=-sinxe^(-x)
u=∫-sinxe^(-x)dx
=∫e^(-x)dcosx
=cosxe^(-x)-∫-cosxe^(-x)dx
=cosxe^(-x)+∫e^(-x)dsinx
=cosxe^(-x)+sinxe^(-x)-∫-sinxe^(-x)dx
所以2∫-sinxe^(-x)dx=2u=(cosx+sinx)e^(-x)
u=1/2*(cosx+sinx)e^(-x)+C
y=1/2*(cosx+sinx)+Ce^x
将x=0代入得y=1/2*(1+0)+C*1=C+1/2=2
C=3/2
所以y=(sinx+cosx)/2+3/2*e^x
y'-y=u'e^x=-sinx
u'=-sinxe^(-x)
u=∫-sinxe^(-x)dx
=∫e^(-x)dcosx
=cosxe^(-x)-∫-cosxe^(-x)dx
=cosxe^(-x)+∫e^(-x)dsinx
=cosxe^(-x)+sinxe^(-x)-∫-sinxe^(-x)dx
所以2∫-sinxe^(-x)dx=2u=(cosx+sinx)e^(-x)
u=1/2*(cosx+sinx)e^(-x)+C
y=1/2*(cosx+sinx)+Ce^x
将x=0代入得y=1/2*(1+0)+C*1=C+1/2=2
C=3/2
所以y=(sinx+cosx)/2+3/2*e^x
更多追问追答
追问
能再问一下吗。什么时候下判断有ex,看等式右端没看到有ex
追答
你是说哪一步
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询