求极限的值,帮忙做下,谢谢
2个回答
展开全部
设n=2k,
lim【n→+∞】(1^4+……n^4)/[n(1³+……+n³)]
=1-lim【n→+∞】((n-1)1³+……+(n-1)³)/[n(1³+……n³)]
=1-lim【n→+∞】(nk²+…行渣…+n(n-1)²)/[n(1³+……猛腊n³)]
=1-lim【n→+∞】(枝带滑k²+……+(n-1)²)/(1³+……+n³)
=1-lim【n→+∞】{∫【k→n-1】t²dt/∫【0→n】t³dt}
=1-lim【n→+∞】(1/3)[(n-1)³-k³]/[(1/4)n^4]
=1-lim【n→+∞】(7/6)(n-1)³/n^4
=1-0
=1
lim【n→+∞】(1^4+……n^4)/[n(1³+……+n³)]
=1-lim【n→+∞】((n-1)1³+……+(n-1)³)/[n(1³+……n³)]
=1-lim【n→+∞】(nk²+…行渣…+n(n-1)²)/[n(1³+……猛腊n³)]
=1-lim【n→+∞】(枝带滑k²+……+(n-1)²)/(1³+……+n³)
=1-lim【n→+∞】{∫【k→n-1】t²dt/∫【0→n】t³dt}
=1-lim【n→+∞】(1/3)[(n-1)³-k³]/[(1/4)n^4]
=1-lim【n→+∞】(7/6)(n-1)³/n^4
=1-0
=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询