1/lnx的不定积分怎么求
x ln (x) -x +C,(C为任意常数).
解题过程如下:
∫ ln (x) dx
=x ln (x) -∫ x d [ ln(x) ]
=x ln(x) -∫ x *(1/x) dx
=x ln (x) -∫ dx
=x ln (x) -x +C,(C为任意常数)
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
扩展资料:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
参考资料来源:百度百科--不定积分
B=∫1/lnxdlnx=lnlnx,发散
C=∫1/√lnxdlnx=2√lnx,发散
D=∫1/ln²xdlnx=-1/lnx=-(0-1),收敛
没看懂啊,
并且这个没有原函数。
那前面还是一个x啊,