如何判断函数是否有界?

就我而言,判断是否有界,就求函数在制定区间内是否最大值,于是就求导。这样做对吗?网上的做法不一样啊。... 就我而言,判断是否有界,就求函数在制定区间内是否最大值,于是就求导。这样做对吗?网上的做法不一样啊。 展开
 我来答
八零后电影院
高粉答主

推荐于2019-10-16 · 说的都是干货,快来关注
知道小有建树答主
回答量:330
采纳率:100%
帮助的人:9.2万
展开全部

对,若函数f在闭区间上连续,则f在上有界,判断函数是否有界有三种方法:

1、理论法:若f(x)在定义域[a,b]上连续,或者放宽到常义可积(有限个第一类间断点),则f(x)在[a,b]上必然有界。

2、计算法:切分(a,b)内连续,limx→a+f(x)存在limx→a+f(x)存在;limx→b−f(x)存在limx→b−f(x)存在 则f(x)在定义域[a,b]内有界。

3、运算规则判定:在边界极限不存在时,有界函数 ±± 有界函数 = 有界函数 (有限个,基本不会有无穷个,无穷是个难分高低的状态)有界 x 有界 = 有界。

4、函数极限判断:因为函数在开区间上连续,所以在开区间内部的任一闭区间上函数都有界。能不能再扩大到整个开区间上也有界,关键是看函数在右端点处的左极限和左端点处的右极限。

扩展资料

二元连续函数的有界性定理:

若二元函数在有界闭域上连续,则函数上有界,即存在正数M,对于任意,有

假设二元连续函数在有界区域D上是无界的。设D的直径为,选取D的一条直径,以该直径为边长,作一个正方形,使得D完全包含在该正方形中,然后分别连接该正方形两组对边的中点,则这两条连线会将该正方形四等分,而有界闭域D会被分为有限个小区域。

由于在有界闭域D上无界,则至少存在某个小闭域,使在该小闭域上是无界的,记该小闭域为,直径为,则,且 

参考资料:百度百科—有界性定理

帐号已注销
2021-06-09 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:161万
展开全部

最常用的方法是看这个函数的值域是有限区间,则有界。另外,用有界函数的运算来判断。即两个有界函数的和,差,积是有界的。

1、理论法:若f(x)在定义域[a,b]上连续,或者放宽到常义可积(有限个第一类间断点),则f(x)在[a,b]上必然有界。

2、计算法:切分(a,b)内连续,limx→a+f(x)存在limx→a+f(x)存在;limx→b−f(x)存在limx→b−f(x)存在 则f(x)在定义域[a,b]内有界。

相关概念

设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界 设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L),则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
在花明楼洗衣服的橄榄石
2018-03-21 · TA获得超过137个赞
知道小有建树答主
回答量:138
采纳率:75%
帮助的人:50.2万
展开全部
既然是在固定区间内求了那肯定是有界的。实际说的是在整个范围内求极值,当我们发现函数总是趋近一个上限一个下限时叫做有界函数。ps自己打的,可能有点不规范
更多追问追答
追问
你的意思,是不是,用导数求极值和最大值不等于求上界或者下界,因为在一个区间里面端点处可能求得最大值?不对,这感觉也跟函数求最大值一样?也可以用中学的那套导数来求上界?
追答
说的有界函数实际上是在整个无穷范围内求边界的,类似于三角函数sin x的–1到1
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科精选
高粉答主

2020-10-21 · 每个回答都超有意思的
知道答主
回答量:60.8万
采纳率:14%
帮助的人:3.1亿
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式