高中数学。求大神帮忙写下这两道题。(要详细过程)谢谢谢谢!
An - A(n-1) = 2n -1
A(n-1) -A(n-2) = 2(n-1) - 2
……
A2 - A1 = 2*2 - 1
等式左、右两边分别相加,得到:
An - A1 = 2*[n+(n-1)+……+2] - 1*(n-1)
= 2*[n+(n-1)+……+2+1] - 1*2 - (n-1)
肢禅差 = n(n+1) - 2 - n + 1
= n²+n -1 -n
袭谨 = n² - 1
所以,
An = A1 + n² - 1 = n² + 1
因为 An = 3n - 1
那么有: An - A(n-1) = (3n-1) -[3(n-1)-1] = 3
所以,
原式 = (A2-A1)/(A1*A2) + (A3-A2)/(A2*A3)+……+[A(n+1)-An]/[An *A(n+1)]
=(1/A1 - 1/A2) + (1/A2 - 1/A3) + ……+ [1/An - 1/A(n+1)]
= 1/A1 - 1/A(n+1)
历皮 = 1/(3*1-1) - 1/[3*(n+1)-1]
= 1/2 - 1/(3n+2)
那第二道题呢?
仔细看一下吧,两题过程都给你了!