高中数学必修和选修有几本?
高中数学共学习11本书,其中必修5本,选修6本。
必学部分:必修1、必修2、必修3、必修4、必修5、选修1-1、选修1-2;
选学部分:选修4-1(几何证明选讲)、选修4-2(矩阵与变换)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)。
扩展资料:
必修一
1、集合
(约4课时)
(1)集合的含义与表示
①通过实例,了解集合的含义,体会元素与集合的“属于”关系。
②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
(2)集合间的基本关系
①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算
①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
2、函数概念与基本初等函数
(约32课时)
(1)函数
①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
③了解简单的分段函数,并能简单应用。
④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
⑤学会运用函数图象理解和研究函数的性质(参见例1)。
(2)指数函数
①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。
②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。
(3)对数函数
①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。
②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。
③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。
(4)幂函数
通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。
(5)函数与方程
①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
(6)函数模型及其应用
①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
(7)实习作业
根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例。
采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
参考资料来源:百度百科-高中数学
高中理科数学共学习11本书,其中必修5本,选修6本。具体如下:
1、选修是为进一步学习一遍参加更高一级考试以便进入高一级学校深造做准备的。 选修分为系列1、系列2、系列3、系列4。 系列1是为学习文科做准备的;系列2是为理工科做准备的;这是必须选择的。系列3是是真正的选修(可选可不选);系列4有十个专题,高考各自省份不同,考试也有不同。一般是专题1、专题4、专题5中任意选一个考试。
2、高中数学是全国高中生学习的一门学科。包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。
3、高中要分文理科,必修是必须要学的,而选修是要看你学的是什么就选什么.比如我是学理科的,那么我就不学文科的选修科目,文科的选修是:政治.地理.历史.理科是:物理.化学.生物.其实文科和理科虽然都考数学但是文科的数学要比理科简单.我们理科的选修数学比文科难,而且选修书的种类也比文科多。
广告 您可能关注的内容 |