排列组合问题求助
某次乒乓球单打比赛中,先将8名选手等分为2组进行小组单循环赛,若有一位选手只打一场比赛后因故退赛,则小组赛的实际比赛场数为?...
某次乒乓球单打比赛中,先将8名选手等分为2组进行小组单循环赛,若有一位选手只打一场比赛后因故退赛,则小组赛的实际比赛场数为?
展开
2个回答
展开全部
1、你这样的计算方法实际上有重复计算的成分,设英语翻译员为集合a,日语翻译员为集合b,双语翻译员为集合c,C(7,4)*C(4,4),C(6,4)*C(5,4)和C(5,4)*C(6,4)中实际上都包括了从a中选4个从b中选4个的组合数。因此需要分情况分别计算:
不从集合c中选人:C(5,4)*C(4,4)=5
从集合c中选一人:C(2,1)*C(5,3)*C(4,4)(选一人翻译英语)+C(2,1)*C(5,4)*C(4,3)(选一人翻译日语)=60
从集合c中选2人:C(2,2)*C(5,2)*C(4,4)(选两人翻译英语)+C(2,2)*C(5,4)*C(4,2)(选两人翻译日语)+C(2,1)*C(5,3)*C(4,3)(选一人翻译英语一人翻译日语)=120
然后将以上三种情况的组合数相加即可,为185。
2、分堆问题,设元素的总数为m,要分成分别包含a1、a2、a3...an个元素的n堆,在不对这n堆进行排列的情况下,不同分堆策略可能性共有C(m,a1)*C(m-a1,a2)*C(m-a1-a2,a3)...*C(m-a1-a2-...-a(n-1),an)/A(n,n)种。
3、4个人去3个房间,要看题目设置的条件如何。
如果条件是每间房间内至少需要有一个人,则4个人只能分成1、1、2的组合,分组的可能性为C(4,2),然后分配到3个房间中,即需进行A(3,3)的排列,故有C(4,2)*A(3,3)=36种可能性。
如果房间内可以一个人都没有,则需要分情况讨论:(1)4个人只在一间房内,显然只有A(3,1)=3种情况;(2)4个人在两间房内,则有2、2和1、3两种分法,2、2分法有C(4,2)*A(3,2)/2=18种情况,而1、3分法有C(4,1)*A(3,2)=24种情况;(3)4个人在三间房内,由上可知有C(4,2)*A(3,3)=36种情况;故而总共有81种不同情况。
10个人里挑4个人共有C(10,4)种情况,再对应到4个节目有A(4,4)种情况,故而总排列数为A(10,4)=5040。
不从集合c中选人:C(5,4)*C(4,4)=5
从集合c中选一人:C(2,1)*C(5,3)*C(4,4)(选一人翻译英语)+C(2,1)*C(5,4)*C(4,3)(选一人翻译日语)=60
从集合c中选2人:C(2,2)*C(5,2)*C(4,4)(选两人翻译英语)+C(2,2)*C(5,4)*C(4,2)(选两人翻译日语)+C(2,1)*C(5,3)*C(4,3)(选一人翻译英语一人翻译日语)=120
然后将以上三种情况的组合数相加即可,为185。
2、分堆问题,设元素的总数为m,要分成分别包含a1、a2、a3...an个元素的n堆,在不对这n堆进行排列的情况下,不同分堆策略可能性共有C(m,a1)*C(m-a1,a2)*C(m-a1-a2,a3)...*C(m-a1-a2-...-a(n-1),an)/A(n,n)种。
3、4个人去3个房间,要看题目设置的条件如何。
如果条件是每间房间内至少需要有一个人,则4个人只能分成1、1、2的组合,分组的可能性为C(4,2),然后分配到3个房间中,即需进行A(3,3)的排列,故有C(4,2)*A(3,3)=36种可能性。
如果房间内可以一个人都没有,则需要分情况讨论:(1)4个人只在一间房内,显然只有A(3,1)=3种情况;(2)4个人在两间房内,则有2、2和1、3两种分法,2、2分法有C(4,2)*A(3,2)/2=18种情况,而1、3分法有C(4,1)*A(3,2)=24种情况;(3)4个人在三间房内,由上可知有C(4,2)*A(3,3)=36种情况;故而总共有81种不同情况。
10个人里挑4个人共有C(10,4)种情况,再对应到4个节目有A(4,4)种情况,故而总排列数为A(10,4)=5040。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询