大学微积分题目
6个回答
展开全部
I(m,n)=1/(n+1)*∫(0,1) (lnx)^m d[x^(n+1)]
=1/(n+1)*(lnx)^m*x^(n+1)|(0,1)-m/(n+1)*∫(0,1) x^n*(lnx)^(m-1) dx
=-1/(n+1)*lim(x->0+) (lnx)^m*x^(n+1)-m/(n+1)*I(m-1,n)
=-m/(n+1)*I(m-1,n)
=[-m/(n+1)]*[-(m-1)/(n+1)]*I(m-2,n)
......
=m!*[-1/(n+1)]^m*I(0,n)
=m!*[-1/(n+1)]^m*∫(0,1) x^n dx
=m!*[-1/(n+1)]^m*[1/(n+1)]*x^(n+1)|(0,1)
=(-1)^m*m!/(n+1)^(m+1)
=1/(n+1)*(lnx)^m*x^(n+1)|(0,1)-m/(n+1)*∫(0,1) x^n*(lnx)^(m-1) dx
=-1/(n+1)*lim(x->0+) (lnx)^m*x^(n+1)-m/(n+1)*I(m-1,n)
=-m/(n+1)*I(m-1,n)
=[-m/(n+1)]*[-(m-1)/(n+1)]*I(m-2,n)
......
=m!*[-1/(n+1)]^m*I(0,n)
=m!*[-1/(n+1)]^m*∫(0,1) x^n dx
=m!*[-1/(n+1)]^m*[1/(n+1)]*x^(n+1)|(0,1)
=(-1)^m*m!/(n+1)^(m+1)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询