x²e的2x次方不定积分,分部积分法
1个回答
展开全部
计算过程如下:
∫x^2e^(-x)dx
=∫x^2e^(-x)(-1)d(-x)
=-∫x^2de^(-x)
=-x^2e^(-x)+∫e^(-x)dx^2
=-x^2e^(-x)+∫e^(-x)2xdx
=-x^2e^(-x)-2∫xde^(-x)
=-x^2e^(-x)-2xe^(-x)+2∫e^(-x)(-1)d(-x)
=-x^2e^(-x)-2xe^(-x)-2∫de^(-x)
=-x^2e^(-x)-2xe^(-x)-2e^(-x)+C
=-e^(-x)*(x^2+2x+2) +C
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询