高数曲线积分,如图,求大神解答三个问题。求详细解答。

 我来答
wjl371116
2019-03-09 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67427

向TA提问 私信TA
展开全部

(1). 点M(x,y)在园(x-1)²+y²=1的上半个圆上;A点的坐标为(0,1);

因此向量MA={0-x,1-y}={-x,1-y};【终点的坐标-起点的坐标】

向厅明量MA的模∣MA∣=r=√[(-x)²+(1-y)²]=√[x²+(1-y)²];

(2). 把向量MA化为单位向量(模为1的向量):{-x/r,(1-y)/r};引力f与单位向量MA同向,

∴向量f可表为:f=(k/r²){-x/r,(1-y)/r}=(k/r³森弯){-x,1-y};

(3).  引力f所做的功W:

所以按格林定理,此积分与路径无关,于是沿B⌒0弧的积分可换成沿直线BO的积分,扮春告

此时,y≡0,dy=0;故

追问
请问为什么一定要单位化?
追答
单位向量的模=1,力f是向量,既要用向量表示力f的方向,
又要保持力的大小不变,因此要用单位向量。
在仙栖洞徒步的洋葱
2019-03-09 · 贡献了超过179个回答
知道答主
回答量:179
采纳率:0%
帮助的人:13万
展开全部
gdgdhddrhfjttkkyykkyknfbdvdgderhtyjlkkkyfjhdvdg
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式