4个回答
展开全部
90,60,36这三个数的最小公倍数是180。
求三个数的最小公倍数,先用三个数的公约数去除,再用其中两个数的公约数去除(另一数则照抄下来),直到三个商中每两个数都是互质数为止。最后把所有的除数和商相乘起来,得的积就是它们的最小公倍数。
90,60,36放在一排,用短除法,先用2除,再用3除,总之用最小的质数先除,直到三个数中有除不尽的情况出现,把之前能除尽的除数等到的结果就是三个数的最大公约数,最小公倍数应该用最大数乘以二一看就看出来了。
数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。
它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。
验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
求三个数的最小公倍数,先用三个数的公约数去除,再用其中两个数的公约数去除(另一数则照抄下来),直到三个商中每两个数都是互质数为止。最后把所有的除数和商相乘起来,得的积就是它们的最小公倍数。
90,60,36放在一排,用短除法,先用2除,再用3除,总之用最小的质数先除,直到三个数中有除不尽的情况出现,把之前能除尽的除数等到的结果就是三个数的最大公约数,最小公倍数应该用最大数乘以二一看就看出来了。
数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。
二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。
特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。
图示法
借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。
图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。
在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。
列表法
运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。
它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。
验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
2018-12-27
展开全部
90,60,36放在一排,用短除法,先用2除,再用3除,总之用最小的质数先除,直到三个数中有除不尽的情况出现,把之前能除尽的除数等到的结果就是三个数的最大公约数,最小公倍数应该用最大数乘以二一看就看出来了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我们平时遇到的一般是求两个数的最小公倍数,之前已经跟大家作过介绍,但有些题目需要我们求三个数的最小公倍数,今天在这里跟大家介绍一下如何求解。
开启分步阅读模式
工具材料:
纸、笔
操作方法
01
枚举法。与求两个数的最小公倍数方法相同。就是将三个数的倍数列举出来,从中找最小的公倍数。
02
扩大倍数法。先列举出这三个数中最大数的倍数,再从这些倍数中找出较少数的倍数,即这两个数的公倍数,从而确定出最小公倍数。
03
短除法。短除法第一步是用这三个数的公因数去除这三个数
04
在得到的商中,再用其中两个数的公约数去除,另一个数照抄下来,不变化。直到三个商中每两个数都是互质数为止。
05
然后把所有的除数和商乘起来,得到的积就是这三个数的最小公倍数。
90,60,36放在一排,用短除法,先用2除,再用3除,总之用最小的质数先除,直到三个数中有除不尽的情况出现,把之前能除尽的除数等到的结果就是三个数的最大公约数,最小公倍数应该用最大数乘以二一看就看出来了
特别提示
所得的商必须两两互质,就是除了1以外没有其它公因数
开启分步阅读模式
工具材料:
纸、笔
操作方法
01
枚举法。与求两个数的最小公倍数方法相同。就是将三个数的倍数列举出来,从中找最小的公倍数。
02
扩大倍数法。先列举出这三个数中最大数的倍数,再从这些倍数中找出较少数的倍数,即这两个数的公倍数,从而确定出最小公倍数。
03
短除法。短除法第一步是用这三个数的公因数去除这三个数
04
在得到的商中,再用其中两个数的公约数去除,另一个数照抄下来,不变化。直到三个商中每两个数都是互质数为止。
05
然后把所有的除数和商乘起来,得到的积就是这三个数的最小公倍数。
90,60,36放在一排,用短除法,先用2除,再用3除,总之用最小的质数先除,直到三个数中有除不尽的情况出现,把之前能除尽的除数等到的结果就是三个数的最大公约数,最小公倍数应该用最大数乘以二一看就看出来了
特别提示
所得的商必须两两互质,就是除了1以外没有其它公因数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |