
求一个不定积分的题目,谢谢
2个回答
展开全部
令√x+1=t
x=t²-1
dx=2tdt
原式=∫(t-1)/(t+1) ·2tdt
=2∫(t²-t)/(t+1)dt
=2∫(t²+t-2t-2+2)/(t+1)dt
=2∫[t-2 +2/(t+1)]dt
=2×【t²/2-2t+2ln|t+1|】+c
=t²-4t+4ln|t+1|+c
=x+1-4√(x+1) +4ln|√(x+1)+1|+c
=x-4√(x+1) +4ln|√(x+1)+1|+c
x=t²-1
dx=2tdt
原式=∫(t-1)/(t+1) ·2tdt
=2∫(t²-t)/(t+1)dt
=2∫(t²+t-2t-2+2)/(t+1)dt
=2∫[t-2 +2/(t+1)]dt
=2×【t²/2-2t+2ln|t+1|】+c
=t²-4t+4ln|t+1|+c
=x+1-4√(x+1) +4ln|√(x+1)+1|+c
=x-4√(x+1) +4ln|√(x+1)+1|+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询