椭圆,双曲线和抛物线的所以定义和性质有哪些?

尽量详细.... 尽量详细. 展开
匿名用户
2013-12-20
展开全部
椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距

椭圆的第二定义:平面内到定点F及定直线l的距离之比等于定值e(0<e<1)的点的轨迹叫做椭圆.定点F叫做椭圆的焦点,定直线l叫做椭圆相应的准线,定比e叫做椭圆的离心率.

双曲线的定义;平面内与两个定点F1、F2的距离的差的绝对值是常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距

双曲线的第二定义:平面内到一个定点F的距离与到一条定直线l的距离的比等于常数e(e>1)的点的轨迹

抛物线的定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线双曲线.定点F为焦点,定直线l为准线,常数e为离心率.

物线的标准方程、图形及几何性质.
应注意到定义中“常数大于 |F1F2|”.若“常数等于|F1F2|”,则其轨迹是线段F1F2;若“常数小于|F1F2|”,其轨迹不存在.
应注意到定义中“常数小于 |F1F2|”且不等于零,若“常数等于|F1F2|”,则其轨迹是共直线的两条射线;若“常数大于|F1F2|”,则其轨迹不存在;若“常数等于零”,则其轨迹是线段F1F2的垂直平分线.还要注意“差的绝对值”,若没有“绝对值”,则当“常数小于|F1F2|”时,其轨迹是双曲线的一支,当“常数等于零”时,其轨迹是一条射线
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
匿名用户
2013-12-20
展开全部
椭圆是一种圆锥曲线(也有人叫圆锥截线的)
  1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离,一般称为2a)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
  2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
  1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b)
  2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b)
  其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c
  又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。
  椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
  标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1

数学上指一动点移动于一个平面上,与平面上两个定点F1,F2的距离的差的绝对值始终为一定值2a(2a小于F1和F2之间的距离)时所成的轨迹叫做双曲线(Hyperbola)。两个定点F1,F2叫做双曲线的焦点(focus)。
双曲线的第二定义:
  x=a^2/c (c>a>0)
  平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
  注意:定点要在直线外;比值大于1
  ·双曲线的标准方程为(x^2/a^2)-(y^2/b^2)=1
  其中a>0,b>0,c^2=a^2+b^2,动点与两个定点距离之差的绝对值为定值2a
 1、取值区域:x≥a,x≤-a或者y≥a,y≤-a
  2、对称性:关于坐标轴和原点对称。
  3、顶点:A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;
  B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。
  4、渐近线:
  横轴:y=±(b/a)x
  竖轴:y=±(a/b)x
  5、离心率:
  e=c/a 取值范围:(1,+∞)
  6 双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率
  7 双曲线焦半径公式:圆锥曲线上任意一点到焦点距离。
  过右焦点的半径r=|ex-a|
  过左焦点的半径r=|ex+a|
  8 等轴双曲线 双曲线的实轴与虚轴长相等
  2a=2b e=√2
  9 共轭双曲线
  (x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线
  (1)共渐近线
  (2)e1+e2>=2√2
  10 准线: x=±a^2/c,或者y=±a^2/c
  11。通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2b^2/a

抛物线
平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
  定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.
  以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
抛物线的标准方程
  右开口抛物线:y^2=2px
  左开口抛物线:y^2=-2px
  上开口抛物线:y=x^2/2p
  下开口抛物线:y=-x^2/2p
抛物线相关参数(对于向右开口的抛物线)
  离心率:e=1
  焦点:(p/2,0)
  准线方程l:x=-p/2
  顶点:(0,0)
  通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P
抛物线:y = ax^2 + bx + c (a=/0)
  就是y等于ax 的平方加上 bx再加上 c
  a > 0时开口向上
  a < 0时开口向下
  c = 0时抛物线经过原点
  b = 0时抛物线对称轴为y轴
  还有顶点式y = a(x-h)^2 + k
  就是y等于a乘以(x-h)的平方+k
  h是顶点坐标的x
  k是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0)
  一般用于求最大值与最小值
  抛物线标准方程:y^2=2px
  它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
  由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式