X服从正态分布N(3000,1000),求X的平方的期望

网上搜到的都是X服从标准正态分布的时候用卡方分布来解答的,我的问题是如果X服从非标准正态分布的时候X的期望是多少?最好能给出详解或者有详解的网页,谢谢!... 网上搜到的都是X服从标准正态分布的时候用卡方分布来解答的,我的问题是如果X服从非标准正态分布的时候X的期望是多少?最好能给出详解或者有详解的网页,谢谢! 展开
 我来答
lkojjj
高粉答主

2019-06-02 · 醉心答题,欢迎关注
知道小有建树答主
回答量:282
采纳率:100%
帮助的人:4.4万
展开全部

X服从正态分布N~(3000,1000)所以有:E(X)=3000,D(X)=1000

又E(X^2)=(E(X))^2+D(X)

即E(X^2)=3000^2+1000=9001000

概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

扩展资料:

数学期望来源:

在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?

用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。

因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。

可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。

参考资料来源:百度百科-数学期望

跳出海的鱼
推荐于2017-09-27 · 知道合伙人教育行家
跳出海的鱼
知道合伙人教育行家
采纳数:3064 获赞数:24170
重庆交通大学学生

向TA提问 私信TA
展开全部
解:X服从正态分布N(3000,1000)
所以有:EX=3000,DX=1000
又E(X^2)=(EX)^2+DX
即E(X^2)=3000^2+1000

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
潇洒的无所谓7N
2013-11-08 · TA获得超过108个赞
知道答主
回答量:30
采纳率:100%
帮助的人:17.9万
展开全部
首先你得知道一个公式 求D(X)=E((X-EX))^2=E(X^2-2XEX+(EX)^2)=E(X^2)-(EX)^2 所以 X的平方的期望就等于X方差+X期望的平方
然后要知道若X服从正态分布(A,B^2)则E(X)=A D(X)=B^2 所以根据你的题目得到E(X)=3000 D(X)=1000 再代入前面的等式 解出E(X^2)=D(X)+(EX)^2=1000+3000^2=9001000
追问
您好请问 正态分布后面那个数是方差还是标准差?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
明明爱你cy
2013-11-04 · TA获得超过1407个赞
知道小有建树答主
回答量:606
采纳率:50%
帮助的人:237万
展开全部
X服从正态分布N(3000,1000)
所以有:EX=3000,DX=1000
又E(X^2)=(EX)^2+DX
即E(X^2)=3000^2+1000
追问
正态分布里后面那个数应该是标准差吧
不过写出公式就可以了,谢谢您的回答!
追答
楼主理解错了,确实是方差而不是标准差
如果我的回答让你满意,请采纳哈,谢谢!祝楼主学习进步!
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式