X服从正态分布N(3000,1000),求X的平方的期望
X服从正态分布N~(3000,1000)所以有:E(X)=3000,D(X)=1000
又E(X^2)=(E(X))^2+D(X)
即E(X^2)=3000^2+1000=9001000
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
扩展资料:
数学期望来源:
在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得100法郎的奖励。当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?
用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。
因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。
参考资料来源:百度百科-数学期望
所以有:EX=3000,DX=1000
又E(X^2)=(EX)^2+DX
即E(X^2)=3000^2+1000
正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。
然后要知道若X服从正态分布(A,B^2)则E(X)=A D(X)=B^2 所以根据你的题目得到E(X)=3000 D(X)=1000 再代入前面的等式 解出E(X^2)=D(X)+(EX)^2=1000+3000^2=9001000
您好请问 正态分布后面那个数是方差还是标准差?
所以有:EX=3000,DX=1000
又E(X^2)=(EX)^2+DX
即E(X^2)=3000^2+1000
正态分布里后面那个数应该是标准差吧
不过写出公式就可以了,谢谢您的回答!
楼主理解错了,确实是方差而不是标准差
如果我的回答让你满意,请采纳哈,谢谢!祝楼主学习进步!