一道高考数学题求解
展开全部
a1+a2+...+a6
=a1+a1q+...+a1q^5
=a1(1+q+q²+...+q^5)=1
所以
1+q+...+q^5=1/a1
1/a1+1/a2+...+1/a6
=1/a1+1/(a1q)+...+1/(a1q^5)
=(q^5+q^4+...+q+1)/(a1q^5)
=(1/a1)/(a1q^5)
=1/(a1²q^5)=10
a1²q^5=1/10
a1a2...a6=a1*a1q*a1q²...*a1q^5=a1^6 q^15=(a1²q^5)³=(1/10)³=1/1000
=a1+a1q+...+a1q^5
=a1(1+q+q²+...+q^5)=1
所以
1+q+...+q^5=1/a1
1/a1+1/a2+...+1/a6
=1/a1+1/(a1q)+...+1/(a1q^5)
=(q^5+q^4+...+q+1)/(a1q^5)
=(1/a1)/(a1q^5)
=1/(a1²q^5)=10
a1²q^5=1/10
a1a2...a6=a1*a1q*a1q²...*a1q^5=a1^6 q^15=(a1²q^5)³=(1/10)³=1/1000
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询