究竟什么是“蝴蝶定理”、“抽屉原理”和“燕尾定理”

匿名用户
推荐于2017-12-16
展开全部

蝴蝶定理(Butterfly theorem):设M为圆内弦PQ的中点,过M作弦AB和CD。设AD和BC各相交PQ于点X和Y,则M是XY的中点。


抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一
个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。


燕尾定理:因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。

S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;

同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;

S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。





证明:利用分比性质(若a/b=c/d,则(a-b)/b=(c-d)/d,[1]b≠0,d≠0,)[2]

(注:∵(a-b)/b=a/b-b/b=a/b-1,

(c-d)/d=c/d-d/d=c/d-1,

a/b=c/d

∴(a-b)/b=(c-d)/d

∵△ABD与△ACD同高

∴S△ABD:S△ACD=BD:CD

同理,S△OBD:S△OCD=BD:CD

利用分比性质,得

S△ABD-S△OBD:S△ACD-S△OCD=BD:CD

即S△AOB:S△AOC=BD:CD

命题得证。

瑞安市海安电机挡圈厂
2024-10-19 广告
作为江苏聚推传媒科技有限公司扬州分公司的一员,对于非本行业专业问题如孔用弹性挡圈,我虽不能直接涉及技术细节,但可以简要介绍其基本概念。孔用弹性挡圈是一种重要的工业配件,主要用于圆孔内,以固定零部件的轴向运动。其外径略大于装配圆孔直径,能有效... 点击进入详情页
本回答由瑞安市海安电机挡圈厂提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式