变限积分怎么求导数 谢谢
2个回答
展开全部
最常见的是变上限函数的积分,即∫f(t)dt(积分限a到x),根据映射的观点,每给一个x就积分出一个实数,因此这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x),注意积分变量用什么符号都不影响积分值,改用t是为了不与上限x混淆。现在用导数定义求g'(x),根据定义,g'(x)=lim[∫f(t)dt-∫f(t)dt]/h(h趋于0,积分限前者为a到x+h,后者为a到x)=lim∫f(t)dt/h(积分限x到x+h,根据的是积分的区间可加性),根据积分中值定理,存在ξ属于(x,x+h),使得∫f(t)dt/h=f(ξ)h,又因为h趋于0时ξ是趋于x的,故极限=limf(ξ)h/h=f(x),至此证明了g'(x)=f(x)。对于最一般形式的变限积分,其积分的上下限都可以是函数,分别用u(x)和v(x)表示,即g(x)=∫f(t)dt(积分限v(x)到u(x)),用类似的方法可以证明,g'(x)=u'(x)f[u(x)]-v'(x)f[v(x)],这是最一般的变限积分求导公式,任何变限积分求导问题都可用此式解决。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
严格的证明需要用到函数的一致收敛性。
但是如果我们假设各种极限过程可交换,极限都存在(当然,这些都可以证明)
那么
f'(x)=(h->0)lim(积分(0,x+h)e^(t(x+h)-t^2)dt
-积分(0,x)e^(tx-t^2)dt)/h
=(h->0)
lim积分(x,x+h)e^(t(x+h)-t^2)dt/h+lim积分(0,x)(e^(t(x+h)-t^2)-e^(tx-t^2))/h*dt-----------***
=1+积分(0,x)(t*e^(tx-t^2))dt
最后的积分不是一个初等函数。
***处后一个极限号需要用到极限交换的假设才能继续计算
但是如果我们假设各种极限过程可交换,极限都存在(当然,这些都可以证明)
那么
f'(x)=(h->0)lim(积分(0,x+h)e^(t(x+h)-t^2)dt
-积分(0,x)e^(tx-t^2)dt)/h
=(h->0)
lim积分(x,x+h)e^(t(x+h)-t^2)dt/h+lim积分(0,x)(e^(t(x+h)-t^2)-e^(tx-t^2))/h*dt-----------***
=1+积分(0,x)(t*e^(tx-t^2))dt
最后的积分不是一个初等函数。
***处后一个极限号需要用到极限交换的假设才能继续计算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询