已知函数fx=(1/(2^x-1)+1/2)x判断奇偶性?和证明fx>0
展开全部
已知函数f(x)=(1/(2^x-1)+1/2)*x^3.
(1)判断f(x)的奇偶性
f(-x)=(1/(2^(-x)-1)+1/2)*(-x)^3
=-(2^x/(1-2^x)+1/2)*x^3
=-(-2^x/(2^x-1)+1-1/2)*x^3
=-((-2^x+2^x-1)/(2^x-1)-1/2)*x^3
=-(-1/(2^x-1)-1/2)*x^3
=(1/(2^x-1)+1/2)*x^3.
所以f(x)为偶函数.
(2)证明f(x)>0
满足f(x)成立,需2^x-1≠0,即x≠0.
x>0时,x^3>0
又因为2^x-1>0,所以1/(2^x-1)>0
1/(2^x-1)+1/2>0
则f(x)=(1/(2^x-1)+1/2)*x^3>0
因为f(x)为偶函数,
x<0时,有f(-x)=f(x)>0
所以f(x)>0
(1)判断f(x)的奇偶性
f(-x)=(1/(2^(-x)-1)+1/2)*(-x)^3
=-(2^x/(1-2^x)+1/2)*x^3
=-(-2^x/(2^x-1)+1-1/2)*x^3
=-((-2^x+2^x-1)/(2^x-1)-1/2)*x^3
=-(-1/(2^x-1)-1/2)*x^3
=(1/(2^x-1)+1/2)*x^3.
所以f(x)为偶函数.
(2)证明f(x)>0
满足f(x)成立,需2^x-1≠0,即x≠0.
x>0时,x^3>0
又因为2^x-1>0,所以1/(2^x-1)>0
1/(2^x-1)+1/2>0
则f(x)=(1/(2^x-1)+1/2)*x^3>0
因为f(x)为偶函数,
x<0时,有f(-x)=f(x)>0
所以f(x)>0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询