二元函数如何求导
1个回答
展开全部
以一例说明
设:u(x,y) = ax^m + bxy + cy^n
∂u/∂x = amx^(m-1) + by :对x求偏导时把y看成是常数,对y时把x看成常数;
∂^2u/∂x^2 = am(m-1)x^(m-2)
∂^2u/∂x∂y = b
∂u/∂y = bx + cny^(n-1)
∂^2u/∂y^2 = cn(n-1)y^(n-2)
若求u(x,y)的微分:
du = ∂u/∂x dx + ∂u/∂y dy
= [amx^(m-1) + by]dx + [bx + cny^(n-1)]dy
其它高阶偏导类似方法进行.
设:u(x,y) = ax^m + bxy + cy^n
∂u/∂x = amx^(m-1) + by :对x求偏导时把y看成是常数,对y时把x看成常数;
∂^2u/∂x^2 = am(m-1)x^(m-2)
∂^2u/∂x∂y = b
∂u/∂y = bx + cny^(n-1)
∂^2u/∂y^2 = cn(n-1)y^(n-2)
若求u(x,y)的微分:
du = ∂u/∂x dx + ∂u/∂y dy
= [amx^(m-1) + by]dx + [bx + cny^(n-1)]dy
其它高阶偏导类似方法进行.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询