怎么求参数方程二阶导数

 我来答
晏竹符琬
2019-11-12 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:25%
帮助的人:1072万
展开全部
求y对x的二阶导数仍然可以看作是参数方程确定的函数的求导方法,因变量由y换作dy/dx,自变量还是x,所以
y对x的二阶导数

dy/dx对t的导数
÷
x对t的导数
dy/dt=1/(1+t^2)
dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)
所以,dy/dx=1/(1+t^2-2t)
d(dy/dx)/dt=[1/(1+t^2-2t)]'=-(2t-2)/(1+t^2-2t))^2
所以,
d2y/dx2=d(dy/dx)/dt
÷
dx/dt
=-(2t-2)/(1+t^2-2t))^2
÷
(1+t^2-2t)/(1+t^2)
=(2-2t)(1+t^2)/(1+t^2-2t)^3
查秀爱钱女
2019-07-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:33%
帮助的人:889万
展开全部
图中式子就是求y关于x的二阶导,因为y和x又可以有参数方程
y(t)和x(t)确定,那么y''即y'关于x的变化率就可以换为:“y'关于t的变化率”与“x关于t的变化率”之比了。这是微分常用的替换方法,要熟练掌握!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
环忠镜绫
2019-06-05 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:700万
展开全部
x=g(t)
y=h(t)
则一阶导数:dy/dx=h'(t)/g'(t)
二阶导数:d²y/dx²=d[h'(t)/g'(t)]/dx
函数中只有变量t,t看作中是变量
={d[h'(t)/g'(t)]/dt}*(dt/dx)
={d[h'(t)/g'(t)]/dt}
/
(dx/dt)
={d[h'(t)/g'(t)]/dt}
/
g'(t)
用语言描述就是:d²y/dx²就是用一阶导数的结果对t求导,然后除以g'(t)。
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式