展开全部
因为不等式ax²-bx-c<0的解集为(2,3)
所以函数f(x)=ax²-bx-c的图像开口向上 a>0
又因为方程ax²-bx-c=0的解为x=(b±根号(b^2 +4ac))/2a
所以b±根号(b^2 +4ac)>0
b>根号(b^2 +4ac)
即b^2>b^2 +4ac 所以c<0
所以函数f(x)=cx²-bx-a图像开口向下
由根与系数关系得c/a=-6
b+根号(b^2 +4ac)=6a b-根号(b^2 +4ac)=4a
所以方程cx²-bx-a=0的两根分别为
x1=(b+根号(b^2 +4ac))/2c=-1/2
x2=(b-根号(b^2 +4ac))/2c=-1/3
所以不等式cx²-bx-a>0的解集为(—1/2,—1/3)
所以函数f(x)=ax²-bx-c的图像开口向上 a>0
又因为方程ax²-bx-c=0的解为x=(b±根号(b^2 +4ac))/2a
所以b±根号(b^2 +4ac)>0
b>根号(b^2 +4ac)
即b^2>b^2 +4ac 所以c<0
所以函数f(x)=cx²-bx-a图像开口向下
由根与系数关系得c/a=-6
b+根号(b^2 +4ac)=6a b-根号(b^2 +4ac)=4a
所以方程cx²-bx-a=0的两根分别为
x1=(b+根号(b^2 +4ac))/2c=-1/2
x2=(b-根号(b^2 +4ac))/2c=-1/3
所以不等式cx²-bx-a>0的解集为(—1/2,—1/3)
展开全部
不等式ax²-bx-c<0的解集为(2,3)
那么x1=2,x2=3是一元二次方程
ax²-bx-c=0的两个实数根,
根据韦达定理:
a>0且
b/a=x1+x2=5
-c/a=x1x2=6
∴-a/c=1/6, -b/c=5/6且c<0
那么不等式cx²-bx-a>0
即x²-b/cx-a/c<0
即x²+5/6x+1/6<0
(x+1/2)(x+1/3)<0
解得-1/2<x<-1/3
即不等式解集为(-1/2,-1/3)
那么x1=2,x2=3是一元二次方程
ax²-bx-c=0的两个实数根,
根据韦达定理:
a>0且
b/a=x1+x2=5
-c/a=x1x2=6
∴-a/c=1/6, -b/c=5/6且c<0
那么不等式cx²-bx-a>0
即x²-b/cx-a/c<0
即x²+5/6x+1/6<0
(x+1/2)(x+1/3)<0
解得-1/2<x<-1/3
即不等式解集为(-1/2,-1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询