初中数学题,急急急!!!
在△ABC中,D是∠CAB平分线上的点,过点D作AB的平行线分别与直线AC、BC交于点E、F,(1)连结BD,若EF=AE+BF(如图1),请说明BD是∠ABC的平分线;...
在△ABC中,D是∠CAB平分线上的点,过点D作AB的平行线分别与直线AC、BC交于点E、F,(1)连结BD,若EF=AE+BF(如图1),请说明BD是∠ABC的平分线;(2)若BD是外角∠CBH的平分线,①在图2中,AE、BF、EF之间满足什么数量关系,请说明理由;②若△ABC中,A、B是定点,C是动点,且运动中始终保持∠CAB=m°(m是定值),∠ABC(0°<∠ABC<180°)则随着点C的运动而变化.探究:随着∠ABC的不断变化,由①得出的结论始终成立吗?若成立,请说明理由;若不成立,请直接写出你的探索结果.
展开
2个回答
展开全部
解:(1)∵AD平分∠CAB,
∴∠EAD=∠搏碧伍BAD,
∵EF∥AB,
∴∠EDA=∠BAD,
∴∠EDA=∠EAD,
∴AE=ED,
∵EF=AE+BF,慧稿
∴DF=BF,
∴∠FBD=∠FDB,
∵EF∥AB,
∴∠FDB=∠DBA,
∴∠FBD=∠DBA,
∴BD平分∠CBA.
(2)①AE=BF+EF,
理由是:∵EF∥AB,
∴∠EDA=∠DAB,∠EDB=∠DBH,
∵AD平分∠CAB,BD平分∠CBH,
∴∠DAB=∠DAE,∠DBH=∠DBC,
∴∠EDA=∠DAE,∠FDB=∠CBD,
∴AE=DE,DF=BF,
∴AE=DE=EF+DF=EF+BF.
②①中的结论始终成立,
理由基或是:∵EF∥AB,
∴∠EDA=∠DAB,∠EDB=∠DBH,
∵AD平分∠CAB,BD平分∠CBH,
∴∠DAB=∠DAE,∠DBH=∠DBC,
∴∠EDA=∠DAE,∠FDB=∠CBD,
∴AE=DE,DF=BF,
∴AE=DE=EF+DF=EF+BF.
∴∠EAD=∠搏碧伍BAD,
∵EF∥AB,
∴∠EDA=∠BAD,
∴∠EDA=∠EAD,
∴AE=ED,
∵EF=AE+BF,慧稿
∴DF=BF,
∴∠FBD=∠FDB,
∵EF∥AB,
∴∠FDB=∠DBA,
∴∠FBD=∠DBA,
∴BD平分∠CBA.
(2)①AE=BF+EF,
理由是:∵EF∥AB,
∴∠EDA=∠DAB,∠EDB=∠DBH,
∵AD平分∠CAB,BD平分∠CBH,
∴∠DAB=∠DAE,∠DBH=∠DBC,
∴∠EDA=∠DAE,∠FDB=∠CBD,
∴AE=DE,DF=BF,
∴AE=DE=EF+DF=EF+BF.
②①中的结论始终成立,
理由基或是:∵EF∥AB,
∴∠EDA=∠DAB,∠EDB=∠DBH,
∵AD平分∠CAB,BD平分∠CBH,
∴∠DAB=∠DAE,∠DBH=∠DBC,
∴∠EDA=∠DAE,∠FDB=∠CBD,
∴AE=DE,DF=BF,
∴AE=DE=EF+DF=EF+BF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询