
展开全部
因为a1=1,a(n+1)=2an^2+1
所以设a(n+1)+i*(n+1)^2+j*(n+1)+k=2*[an+i*n^2+j*n+k]
展开化简得a(n+1)=2an+i*n^2+(j-2i)*n+k-i-j
对比系数得i=1,j-2i=0,k-i-j=1
所以i=1,j=2,k=4
故a(n+1)+(n+1)^2+2(n+1)+4=2*[an+n^2+2n+4]
所以设a(n+1)+i*(n+1)^2+j*(n+1)+k=2*[an+i*n^2+j*n+k]
展开化简得a(n+1)=2an+i*n^2+(j-2i)*n+k-i-j
对比系数得i=1,j-2i=0,k-i-j=1
所以i=1,j=2,k=4
故a(n+1)+(n+1)^2+2(n+1)+4=2*[an+n^2+2n+4]
2014-07-30
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询