如图1,在平面直角坐标系xoy中,直线y=x+6与x轴交于A,与y轴交于B,BC⊥AB交x轴于C.
展开全部
直线y=x+6与x轴交于A(-6,0),与y轴交于B(0,6),BC⊥AB交x轴于C(6,0),
①△ABC的面积=36.
②作EF⊥x轴于F,易知△DEF≌△BDO(AAS),
设D(-d,0),d>6,则F(-d-6,0),E(-d-6,d),
设直线EA的解析式为y=kx+b,则
0=-6k+b,
d=k(-d-6)+b,
解得k=-1,b=-6,
∴直线EA的解析式为y=-x-6.
③这题的方法是利用初一的对称来做的,如一条公路上修一座候车室到AB两村距离之和最短的问题,结合本题特点易知使OM+NM的值最小的是点O到点N关于直线AF对称点N’之间线段的长.当点N运动时,ON’最短为点O到直线AE的距离,即点O到直线AE的垂线段的长.
∠OAE=30°,OA=6,所以OM+NM的值为3.
①△ABC的面积=36.
②作EF⊥x轴于F,易知△DEF≌△BDO(AAS),
设D(-d,0),d>6,则F(-d-6,0),E(-d-6,d),
设直线EA的解析式为y=kx+b,则
0=-6k+b,
d=k(-d-6)+b,
解得k=-1,b=-6,
∴直线EA的解析式为y=-x-6.
③这题的方法是利用初一的对称来做的,如一条公路上修一座候车室到AB两村距离之和最短的问题,结合本题特点易知使OM+NM的值最小的是点O到点N关于直线AF对称点N’之间线段的长.当点N运动时,ON’最短为点O到直线AE的距离,即点O到直线AE的垂线段的长.
∠OAE=30°,OA=6,所以OM+NM的值为3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |