第24题,要过程,谢谢。
展开全部
解:(1)二次函数y
=
-2x
2
/3
+
bx
+
5,与x轴的公共点是A(5,0),把点A的坐标代入二次函数解析式中,可得-2*25/3
+
5b
+
5
=
0
=>
5b
=
35/3
=>
b
=
7/3,所以二次函数的解析式为
y
=
-2x
2
/3
+
7x/3
+
5
;
(2)二次函数y
=
-2x
2
/3
+
7x/3
+
5与y轴的公共点B(0,5),把x
=
3代入二次函数解析式中,可得y
=
-2*9/3
+
7
+
5
=
6,所以点C(3,6),所以k
AB
=
(5
–
0)/(0
–
5)
=
-1,而k
AC
=
(6
–
0)/(3
–
5)
=
-3,所以tan∠BAC
=
(k
AB
–
k
AC
)/(1
+
k
AB
k
AC
)
=
2/(1
+
3)
=
1/2
;
(3)设直线AD的斜率为k,因为∠DAC
=
45°,所以tan∠DAC
=
(k
–
k
AC
)/(1
+
kk
AC
)
=
tan45°
=
1
=>
(k
+
3)(1
–
3k)
=
1
=>
k
+
3
=
1
–
3k
=>
4k
=
-2
=>
k
=
-1/2,所以直线AD的方程为y
=
(-1/2)(x
–
5),与y
=
-2x
2
/3
+
7x/3
+
5联立可得-2x
2
/3
+
17x/6
+
5/2
=
0
=>
-4x
2
+
17x
+
15
=
0
=>
(x
–
5)(-4x
–
3)
=
0
=>
x
=
5或者-3/4,所以点D坐标为
(-3/4
,
23/8)
。
=
-2x
2
/3
+
bx
+
5,与x轴的公共点是A(5,0),把点A的坐标代入二次函数解析式中,可得-2*25/3
+
5b
+
5
=
0
=>
5b
=
35/3
=>
b
=
7/3,所以二次函数的解析式为
y
=
-2x
2
/3
+
7x/3
+
5
;
(2)二次函数y
=
-2x
2
/3
+
7x/3
+
5与y轴的公共点B(0,5),把x
=
3代入二次函数解析式中,可得y
=
-2*9/3
+
7
+
5
=
6,所以点C(3,6),所以k
AB
=
(5
–
0)/(0
–
5)
=
-1,而k
AC
=
(6
–
0)/(3
–
5)
=
-3,所以tan∠BAC
=
(k
AB
–
k
AC
)/(1
+
k
AB
k
AC
)
=
2/(1
+
3)
=
1/2
;
(3)设直线AD的斜率为k,因为∠DAC
=
45°,所以tan∠DAC
=
(k
–
k
AC
)/(1
+
kk
AC
)
=
tan45°
=
1
=>
(k
+
3)(1
–
3k)
=
1
=>
k
+
3
=
1
–
3k
=>
4k
=
-2
=>
k
=
-1/2,所以直线AD的方程为y
=
(-1/2)(x
–
5),与y
=
-2x
2
/3
+
7x/3
+
5联立可得-2x
2
/3
+
17x/6
+
5/2
=
0
=>
-4x
2
+
17x
+
15
=
0
=>
(x
–
5)(-4x
–
3)
=
0
=>
x
=
5或者-3/4,所以点D坐标为
(-3/4
,
23/8)
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询