1个回答
2014-08-21 · 知道合伙人软件行家
关注
展开全部
解:①当x∈[-2,-1]时,则x+4∈[2,3],
因为当x∈[2,3]时,f(x)=x,
所以f(x+4)=x+4.
又因为f(x)是周期为2的周期函数,
所以f(x)=f(x+4)=x+4.
所以当x∈[-2,-1]时,f(x)=x+4.
②当x∈[-1,0]时,则2-x∈[2,3],
因为当x∈[2,3]时,f(x)=x,
所以f(2-x)=2-x.
又因为f(x)是周期为2的周期函数,
所以f(-x)=f(2-x)=2-x.
因为函数f(x)是定义在实数R上的偶函数,
所以f(x)=f(-x)=f(2-x)=2-x.
所以由①②可得当x∈[-2,0]时,f(x)=3-|x+1|.
因为当x∈[2,3]时,f(x)=x,
所以f(x+4)=x+4.
又因为f(x)是周期为2的周期函数,
所以f(x)=f(x+4)=x+4.
所以当x∈[-2,-1]时,f(x)=x+4.
②当x∈[-1,0]时,则2-x∈[2,3],
因为当x∈[2,3]时,f(x)=x,
所以f(2-x)=2-x.
又因为f(x)是周期为2的周期函数,
所以f(-x)=f(2-x)=2-x.
因为函数f(x)是定义在实数R上的偶函数,
所以f(x)=f(-x)=f(2-x)=2-x.
所以由①②可得当x∈[-2,0]时,f(x)=3-|x+1|.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询