计算图像相似度的算法有哪些

rt... rt 展开
 我来答
季諾管理丶碓启
推荐于2016-05-13 · 超过65用户采纳过TA的回答
知道答主
回答量:114
采纳率:0%
帮助的人:153万
展开全部
SIM = Structural SIMilarity(结构相似性),这是一种用来评测图像质量的一种方法。由于人类视觉很容易从图像中抽取出结构信息,因此计算两幅图像结构信息的相似性就可以用来作为一种检测图像质量的好坏.

首先结构信息不应该受到照明的影响,因此在计算结构信息时需要去掉亮度信息,即需要减掉图像的均值;其次结构信息不应该受到图像对比度的影响,因此计算结构信息时需要归一化图像的方差;最后我们就可以对图像求取结构信息了,通常我们可以简单地计算一下这两幅处理后的图像的相关系数.

然而图像质量的好坏也受到亮度信息和对比度信息的制约,因此在计算图像质量好坏时,在考虑结构信息的同时也需要考虑这两者的影响.通常使用的计算方法如下,其中C1,C2,C3用来增加计算结果的稳定性:
2u(x)u(y) + C1
L(X,Y) = ------------------------ ,u(x), u(y)为图像的均值
u(x)^2 + u(y)^2 + C1

2d(x)d(y) + C2
C(X,Y) = ------------------------,d(x),d(y)为图像的方差
d(x)^2 + d(y)^2 + C2

d(x,y) + C3
S(X,Y) = ----------------------,d(x,y)为图像x,y的协方差
d(x)d(y) + C3

而图像质量Q = [L(X,Y)^a] x [C(X,Y)^b] x [S(X,Y)^c],其中a,b,c分别用来控制三个要素的重要性,为了计算方便可以均选择为1,C1,C2,C3为比较小的数值,通常C1=(K1 x L)^2, C2=(K2 xL)^2, C3 = C2/2, K1 << 1, K2 << 1, L为像素的最大值(通常为255).
希望对你能有所帮助。
lxr1182
2014-08-28
知道答主
回答量:15
采纳率:0%
帮助的人:4.1万
展开全部
sift算法,shape context
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式