数学题,谢谢!

阅读下面材料,并解答问题.材料:将分式−x4−x2+3−x2+1拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为-x2+... 阅读下面材料,并解答问题.
材料:将分式
−x4−x2+3
−x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母为-x2+1,可设-x4-x2+3=(-x2+1)(x2+a)+b
则-x4-x2+3=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,∴
a−1=1
a+b=3
,∴a=2,b=1

−x4−x2+3
−x2+1

(−x2+1)(x2+2)+1
−x2+1
=
(−x2+1)(x2+2)
−x2+1
+
1
−x2+1
=x2+2+
1
−x2+1

这样,分式
−x4−x2+3
−x2+1
被拆分成了一个整式x2+2与一个分式
1
−x2+1
的和.
解答:
(1)将分式
−x4−6x2+8
−x2+1
拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)当x∈(-1,1),试说明
−x4−6x2+8
−x2+1
的最小值为8.
展开
 我来答
百度网友9d59776
2014-07-24 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2万
采纳率:72%
帮助的人:7845万
展开全部
解:(1)由分母为-x2+1,可设-x4-6x2+8=(-x2+1)(x2+a)+b
则-x4-6x2+8=(-x2+1)(x2+a)+b=-x4-ax2+x2+a+b=-x4-(a-1)x2+(a+b)
∵对应任意x,上述等式均成立,
∴a−1=6
a+b=8
,∴a=7,b=1

−x4−6x2+8 (−x2+1)(x2+7)+1 1
------------= --------------------=x²+7+-------
−x2+1 -x²+1 -x²+1
(2)∵x∈(-1,1),
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式