已知a B为锐角,且cosa=4/5,cos(a+B)=-16/65,求cosB的值,急用

 我来答
晏漫沈春兰
2019-12-30 · TA获得超过1190个赞
知道小有建树答主
回答量:1620
采纳率:100%
帮助的人:7.4万
展开全部
cosa =4/5
a 为锐角,所以sina>0,
sina=√(1- cos²a) = 3/5
cos(a+b)= -16/65,
a、b为锐角,所以 a+b 180°,sin(a+b) >0
即 sin(a+b)= √【1 - cos²(a+b)】 = 63/65
cos(a+b)= cosacosb - sinasinb = (4/5)cosb - (3/5)sinb =-16/65 (1)
sin(a+b)= sinacosb +cosasinb = (3/5)cosb + (4/5)sinb = 63/65 (2)
(1)× 4 + (2)× 3得
5cosb = 125/65
cosb =5/13
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式