经过点A(1,-1)与B(3,1),圆心在Y轴上的圆的方程为?
1个回答
展开全部
答:
圆心在y轴上,则圆心横坐标值为0
设圆心为(0,a),半径为R
则圆方程为:
x^2+(y-a)^2=R^2
把点A(1,-1)和点B(3,1)代入得:
1+(-1-a)^2=R^2
9+(1-a)^2=R^2
所以:
(1-a)^2-(1+a)^2+8=0
-4a+8=0
a=2
所以:R^2=9+(1-a)^2=9+(1-2)^2=10
所以:圆方程为x^2+(y-2)^2=10
圆心在y轴上,则圆心横坐标值为0
设圆心为(0,a),半径为R
则圆方程为:
x^2+(y-a)^2=R^2
把点A(1,-1)和点B(3,1)代入得:
1+(-1-a)^2=R^2
9+(1-a)^2=R^2
所以:
(1-a)^2-(1+a)^2+8=0
-4a+8=0
a=2
所以:R^2=9+(1-a)^2=9+(1-2)^2=10
所以:圆方程为x^2+(y-2)^2=10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询