机器学习和深度学习的区别是什么?

现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系... 现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系 展开
 我来答
环球青藤
2020-09-29 · 专注大学生职业技能培训在线教育品牌
环球青藤
环球青藤开设了就业、技能培训、职业资格考试、学历提升、外语培训、留学和兴趣类专业课程、为大学生提供考试/就业双重服务。
向TA提问
展开全部
现在有很多人对机器学习和深度学习的概念并不是很明白,其实深度学习是机器学习中的一部分,而机器学习是深度学习的基础,这两个知识体系都是服务于人工智能的。在这篇文章中我们给大家介绍一下关于机器学习和深度学习的区别,希望这篇文章能够帮助大家理解机器学习和深度学习。
那么什么是机器学习呢?一般来说,为了实现人工智能,我们会使用机器学习。我们有几种用于机器学习的算法。这些算法有决策树、随机森林、人工神经网络。而机器学习有3类学习算法,分别是监督学习、无监督学习、增强学习学习,其中,监督机器学习算法进行预测。此外,该算法在分配给数据点的值标签中搜索模式。无监督机器学习算法则是没有标签与数据关联。并且,这些 ML 算法将数据组成簇。此外,他需要描述其结构,并使复杂的数据看起来简单且能有条理的分析。而增强机器学习算法:我们使用这些算法选择动作。并且,我们能看到它基于每个数据点。一段时间后,算法改变策略来更好地学习。
那么什么是深度学习呢?机器学习只关注解决现实问题。它还需要人工智能的一些想法。机器学习通过旨在模仿人类决策能力的神经网络。机器学习工具和技术是两个主要的仅关注深度学习的子集。我们需要应用它来解决任何需要思考的问题人类的或人为的。任何深度神经网络都将包含三层,分别是输入层、隐藏层、输出层。
那么深度学习和机器学习的关系是什么呢?通常我们用机器算法来解析数据,学习数据,并从中做出理智的判定。根本上讲,深度学习用于创建可自我学习和可理智判定的人工“神经网络”。我们可以说深度学习是机器学习的子领域。而机器学习与深度学习对比具体体现在四方面,第一就是数据依赖,一般来说,性能是区别二者的最主要之处。当数据量小时,深度学习算法表现不佳。这就是深度学习算法需要大量的数据才能完美理解的唯一原因。第二就是硬件依赖通常,深度学习依赖于高端设备,而传统学习依赖于低端设备。因此,深度学习要求包含GPU。这是它工作中不可或缺的一部分。它们还需要进行大量的矩阵乘法运算。第三就是功能工程化,在此,领域知识被用于创建特征提取器,以降低数据的复杂性,并使模式对学习算法的工作原理上更可见,虽然处理起来非常困难。 因此,这是耗时并需要专业知识的。第四就是解决问题的方法,一般来说,我们使用传统算法来解决问题。但它需要将问题分解为不同的部分以单独解决它们。要获得结果,请将它们全部合并起来。
关于机器学习和深度学习的相关知识我们就给大家介绍到这里了,大家在进行学习机器学习的时候一定不要忽视这两个知识的区别,这样能够帮助大家更好地理解机器学习。
AI科普教育
2021-02-15 · 帮助在职IT从业童鞋轻松入门AI。
AI科普教育
采纳数:3 获赞数:0

向TA提问 私信TA
展开全部

机器学习与深度学习的区别?

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
老男孩教育
2022-03-29 · 百度认证:北京一天天教育科技有限公司官方账号,教育领域创作者
老男孩教育
专注于Linux高级运维、Python开发、大数据培训,为您分享行业前沿的技术,有效的学习方法和有价值的学习资料。
向TA提问
展开全部
| 机器学习的算法流程 |
1、数据集准备
2、探索性地对数据进行分析
3、数据预处理
4、数据分割
5、机器学习算法建模
6、选择机器学习任务
7、评价机器学习算法对实际数据的应用情况如何
首先我们要研究的是数据问题,数据集是构建机器学习模型流程的起点,进行探索性数据分析是为了获得对数据的初步了解。探索性数据分析方法简单来说就是去了解数据,分析数据,搞清楚数据的分布。主要注重数据的真实分布,强调数据的可视化,使分析者能一目了然看出数据中隐含的规律,从而得到启发,以此帮助分析者找到适合数据的模型。
数据预处理,其实就是对数据进行清理、数据整理或普通数据处理。指对数据进行各种检查和校正过程,以纠正缺失值、拼写错误、使数值正常化/标准化以使其具有可比性、转换数据(如对数转换)等问题。
| 深度学习的算法流程 |
深度学习优化了数据分析,建模过程的流程也是缩短了,由神经网络统一了原来机器学习中百花齐放的算法。
1、数据集准备
2、数据预处理
3、数据分割
4、定义神经网络模型
5、训练网络
深度学习不需要我们自己去提取特征,而是通过神经网络自动对数据进行高维抽象学习,减少了特征工程的构成,在这方面节约了很多时间。
但是同时因为引入了更加深、更复杂的网络模型结构,所以调参工作变得更加繁重啦。例如:定义神经网络模型结构、确认损失函数、确定优化器,最后就是反复调整模型参数的过程。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式