3个回答
展开全部
1/(u^2+a^2)^2 = (1/a^2)[a^2/(u^2+a^2)^2]
= (1/a^2)[(a^2+u^2-u^2)/(u^2+a^2)^2]
= (1/a^2)[1/(u^2+a^2) - u^2/(u^2+a^2)^2]
I = ∫du/(u^2+a^2)^2 = (1/2a^2){2∫du/(u^2+a^2) - ∫2u^2du/(u^2+a^2)^2}
= (1/2a^2){2∫du/(u^2+a^2) - ∫ud(u^2+a^2)/(u^2+a^2)^2}
= (1/2a^2){2∫du/(u^2+a^2) + ∫ud[1/(u^2+a^2)]}
= (1/2a^2)[2∫du/(u^2+a^2) + u/(u^2+a^2) - ∫du/(u^2+a^2)]
= (1/2a^2)[u/(u^2+a^2) + ∫du/(u^2+a^2)]
= (1/a^2)[(a^2+u^2-u^2)/(u^2+a^2)^2]
= (1/a^2)[1/(u^2+a^2) - u^2/(u^2+a^2)^2]
I = ∫du/(u^2+a^2)^2 = (1/2a^2){2∫du/(u^2+a^2) - ∫2u^2du/(u^2+a^2)^2}
= (1/2a^2){2∫du/(u^2+a^2) - ∫ud(u^2+a^2)/(u^2+a^2)^2}
= (1/2a^2){2∫du/(u^2+a^2) + ∫ud[1/(u^2+a^2)]}
= (1/2a^2)[2∫du/(u^2+a^2) + u/(u^2+a^2) - ∫du/(u^2+a^2)]
= (1/2a^2)[u/(u^2+a^2) + ∫du/(u^2+a^2)]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
积分公式!
∫u'dv'=u'v'-∫v'du'
这里,令 u'=1/[2a^2(u^2+a^2)], v'=u/2a^2
∫u'dv'=u'v'-∫v'du'
这里,令 u'=1/[2a^2(u^2+a^2)], v'=u/2a^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫[1/(u²+a²)²]du=(1/a²)∫[a²/(u²+a²)²]du
=(1/a²)∫[(u²+a²-u²)/(u²+a²)²]du
=(1/a²)[∫[1/(u²+a²)]du-∫u²du/(u²+a²)²]
=(1/a²)[∫[1/(u²+a²)]du-(1/2)∫ud(u²+a²)/(u²+a²)²]
=(1/a²){∫[1/(u²+a²)]du+(1/2)∫ud[1/(u²+a²)]}
=(1/a²){∫[1/(u²+a²)]du+(1/2)[u/(u²+a²)-∫du/(u²+a²)]}
=(1/a²){(1/2)∫du/(u²+a²)+(1/2)[u/(u²+a²)]}
=(1/2a²)[u/(u²+a²)+∫du/(u²+a²)];
=(1/a²)∫[(u²+a²-u²)/(u²+a²)²]du
=(1/a²)[∫[1/(u²+a²)]du-∫u²du/(u²+a²)²]
=(1/a²)[∫[1/(u²+a²)]du-(1/2)∫ud(u²+a²)/(u²+a²)²]
=(1/a²){∫[1/(u²+a²)]du+(1/2)∫ud[1/(u²+a²)]}
=(1/a²){∫[1/(u²+a²)]du+(1/2)[u/(u²+a²)-∫du/(u²+a²)]}
=(1/a²){(1/2)∫du/(u²+a²)+(1/2)[u/(u²+a²)]}
=(1/2a²)[u/(u²+a²)+∫du/(u²+a²)];
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询