解答数学题 采纳
将点A(-4,0)代入:0=(1/2)×(-4)² - (-4) + c
解得c=-12
∴二次函数的关系式为y=(1/2)x² - x - 12
2.由(1)可得:点B的坐标为(6,0), 顶点M的坐标为(1,-25/2) ,则点M'的坐标为(1,25/2)
∵点M是二次函数的顶点
∴AM=BM
∵点M'是顶点M关于x轴的对称点
∴AM'=BM'且AM=AM'
∴AM=BM=BM'=AM'
∴四边形AMBM'是菱形
|AB|=|6-(-4)|=10 , |MM'|=|25/2 - (-25/2)|=25
S=|AB|×|MM'|=10×25=250
3.假设存在抛物线y=1/2x²-x+c,使得四边形AMBM'为正方形
则点A,B的坐标分别为A(x1,0),B(x2,0) ,顶点M的坐标为(1,2c-1/2 )
根据韦达定理有:x1+x2=2 , x1x2=2c
∴|AB|=|x1-x2|=(x1+x2)² - 4x1x2=|4 - 8c|
∵四边形AMBM'为正方形
∴AB=MM'
∴|4 - 8c|=2×[(2c-1)/2] ,整理后:4c² + 4c - 3=0 ,解得:c=1/2或c=-3/2
∵抛物线y=1/2x²-x+c的图象与x轴分别交于A、B两点
∴b² - 4ac﹥0 ,即: 1 - 2c﹥0 , 得:c﹤1/2
∴c=-3/2
∴存在抛物线y=1/2x² - x - 3/2,使得四边形AMBM'为正方形