一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B点,点P(a,0)在x轴正半轴上运动,点Q(0,b)
一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在...
一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B点,点P(a,0)在x轴正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.(1)求k的值,并在直角坐标系中画出一次函数的图象;(2)求a、b满足的等量关系式;(3)若△APQ是等腰三角形,求△APQ的面积.
展开
1个回答
展开全部
(1)∵一次函数y=kx+k的图象经过点(1,4),
∴4=k×1+k,即k=2,∴y=2x+2,
当x=0时,y=2,当y=0时,x=-1,
即A(-1,0),B(0,2),
如图,直线AB是一次函数y=2x+2的图象;
(2)∵PQ⊥AB
∴∠QPO=90°-∠BAO
又∵∠ABO=90°-∠BAO
∴∠ABO=∠QPO
∴Rt△ABO∽Rt△QPO
∴
=
,即
=
∴a=2b;
(3)由(2)知a=2b,∴AP=AO+OP=1+a=1+2b,
AQ2=OA2+OQ2=1+b2,PQ2=OP2+OQ2=a2+b2=(2b)2+b2=5b2,
若AQ=PQ,即AQ2=PQ2,则1+b2=5b2,即b=
或?
(舍去),
此时,AP=2,OQ=
,S△APQ=
×AP×OQ=
×2×
=
(平方单位),
若AP=PQ,则1+2b=
b,即b=2+
,此时AP=1+2b=5+2
,OQ=2+
,
S△APQ=
×AP×OQ=
×(5+2
∴4=k×1+k,即k=2,∴y=2x+2,
当x=0时,y=2,当y=0时,x=-1,
即A(-1,0),B(0,2),
如图,直线AB是一次函数y=2x+2的图象;
(2)∵PQ⊥AB
∴∠QPO=90°-∠BAO
又∵∠ABO=90°-∠BAO
∴∠ABO=∠QPO
∴Rt△ABO∽Rt△QPO
∴
AO |
QO |
OB |
OP |
1 |
b |
2 |
a |
∴a=2b;
(3)由(2)知a=2b,∴AP=AO+OP=1+a=1+2b,
AQ2=OA2+OQ2=1+b2,PQ2=OP2+OQ2=a2+b2=(2b)2+b2=5b2,
若AQ=PQ,即AQ2=PQ2,则1+b2=5b2,即b=
1 |
2 |
1 |
2 |
此时,AP=2,OQ=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
若AP=PQ,则1+2b=
5 |
5 |
5 |
5 |
S△APQ=
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载