关于回味红色经典的征文拜托各位大神

正文两篇,一:围绕“回味红色经典,传承革命精神”写一篇征文二:关于“勾股定理写一篇论文... 正文两篇,一:围绕“回味红色经典,传承革命精神”写一篇征文 二:关于“勾股定理写一篇论文 展开
手机用户93499
2014-11-09 · 超过58用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:127万
展开全部
在历史的长河中,记载着星星点点的事情。回望过去,我们中华儿女用自己的勤劳与智慧,缔造了中国共产党,展望现在,伟大的中国共产党迎来的他90岁的生日。 翻开中国近代史,几多沧桑,几多磨难,几多耻辱,几多抗争。光阴似箭,日月如梭,转瞬之间,中国共产党已经走过90年的风风雨雨。在党的90岁之际,我们每一个人的心情,除了感慨,更是感激。 160年前,西方列强用坚船利炮撞开了古老中国沉重的大门,从此,在这美丽的国土上,财富任人掠夺,文化任人摧残,人民任人宰割。虽然有一系列人如:龚自珍,林则徐,康有为,梁启超,想为国家和人民做一点贡献,但是他们的无限憧憬只是一场空梦。在漫漫的长夜里,人们盼望着,等待着。希望有一天,人民能解放,国家能富强起来。 终于,在一个杨柳轻拂的七月,从碧波荡漾的嘉兴湖传来一个振奋人心的消息——中国共产党成立了!中国共产党的诞生,在黑沉沉的神州大地上树起了一之熊熊燃烧的火焰,给古老的中华民族带来了光明与希望。这火炬带领中国人民扫荡的土豪军阀,赶走可日本列强,覆灭了蒋家王朝,焚毁了一切……和腐朽;这火炬带领中国人民在一片腥风血雨中,用革命的的枪杆子打天下,从农村到城市,从弱小到强大,以无数先烈的英勇牺牲,换来了新中国的诞生。 沧海桑田,神州巨变,90年的征程岁月峥嵘,90年的征程金光灿烂。如今,南极上空早已飘扬着我们的五星红旗,太平洋上出现了我们强大的海军舰队,神州5好也带着刚强的气势升上了太空;如今,一座座现代化的城市迅速崛起,一个个商厦,工厂,高科技企业正遍地生花……香港回来了,澳门回来了,那些曾经藐视我们为东亚病夫的列强,一个个低下了高傲的头,就连大洋彼岸那个自恃天下第一的超级大国,也不得不一次次为他们傲慢和无礼道歉。我们这个曾经饥寒交迫的民族,已经可以骄傲的告诉世界:一个伟大的党正带领地球上五分之一的人口实现小康,走向富裕。请问,世界上还有哪一个政党能够创造出这样的奇迹。 共产党是伟大的,但也有许许多多曲折和感人。想一句歌词唱得好:“没有共产党就没有新中国!”党的90岁的生日就要来临,让我们忠心祝愿当生日快乐! 关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四 ,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾 三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: 东汉末至三国时代吴国人 为《周髀算经》作注,并著有《勾股圆方图说》. 赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒 等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的 独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明 勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中 体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正 是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系 与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思 想与方法在几百年停顿后的重现与继续." 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段 一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩' 得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式