为什么概率密度函数全域积分为1?
一个概率密度函数,不妨设为一维的f(x),它的涵义就是你取x这个值(或者称之为事件)的概率为f(x),然而所有事件发生概率总和为1,所以概率密度函数全域积分为1。
在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。
扩展资料:
连续型随机变量的概率密度函数有如下性质:
如果概率密度函数fX(x)在一点x上连续,那么累积分布函数可导,并且它的导数:
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。
恩懂了
没看懂…?
还有概率密度函数的全域为什么会是负无穷到正无穷呢?