数学课上,张老师出示了问题1:如图1,四边形ABCD是正方形,BC=1,对角线交点记作O,点E是边BC延长线上一
数学课上,张老师出示了问题1:如图1,四边形ABCD是正方形,BC=1,对角线交点记作O,点E是边BC延长线上一点.连接OE交CD边于F,设CE=x,CF=y,求y关于x...
数学课上,张老师出示了问题1:如图1,四边形ABCD是正方形,BC=1,对角线交点记作O,点E是边BC延长线上一点.连接OE交CD边于F,设CE=x,CF=y,求y关于x的函数解析式及其定义域.(1)经过思考,小明认为可以通过添加辅助线--过点O作OM⊥BC,垂足为M求解.你认为这个想法可行吗?请写出问题1的答案及相应的推导过程;(2)如果将问题1中的条件“四边形ABCD是正方形,BC=1”改为“四边形ABCD是平行四边形,BC=3,CD=2,”其余条件不变(如图2),请直接写出条件改变后的函数解析式;(3)如果将问题1中的条件“四边形ABCD是正方形,BC=1”进一步改为:“四边形ABCD是梯形,AD∥BC,BC=a,CD=b,AD=c(其中a,b,c为常量)”其余条件不变(如图3),请你写出条件再次改变后y关于x的函数解析式以及相应的推导过程.
展开
夏侯鸿远sH
推荐于2016-01-09
·
超过64用户采纳过TA的回答
关注
解:(1)如图:
∵四边形ABCD是正方形,
∴OB=OD.
∵OM⊥BC,
∴∠OMB=∠DCB=90°,
∴OM∥DC.
∴OM=
DC=
,CM=
BC=
.
∵OM∥DC,
∴
=,
即
=,
解得
y=.定义域为x>0.
(2)
y=(x>0).
(3)如右图:
AD∥BC,
==,
=.
过点O作ON∥CD,交BC于点N,
∴
=,
∴
ON=.
∵ON∥CD,
==,
∴
=,
∴
CN=.
∵ON∥CD,
∴
=,即
=.
∴y关于x的函数解析式为
y=(x>0).
收起
为你推荐: