7个简单的高数题目,高分求解!

因为有很多公式,所以就抓图下来,请高手帮忙... 因为有很多公式,所以就抓图下来,请高手帮忙 展开
zjzwanjun
2008-11-13 · TA获得超过1272个赞
知道小有建树答主
回答量:800
采纳率:0%
帮助的人:280万
展开全部
1、设函数F(x)=ax^4+bx^3+cx^2-(a+b+c)x
则F(0)=0,F(1)=0
且F(x)在区间(0,1)内满足可导和连续的条件,故根据罗尔定理,在(0,1)内至少存在一点使得F'(x)=0,
而F'(x)=4ax^3+3bx^3+2cx^2-(a+b+c)
即4ax^3+3bx^3+2cx^2=(a+b+c)在(0,1)内必有一解。
2、(1)原式=(e^x-x-1)/(xe^x-x),分子分母都趋近于0,为0/0型极限,一直求导得,
原式=e^x/(xe^x+2e^x),故结果为0.5
(2)令Y=ln(x/e)/(x-e),则原式=e^Y
因为Y=(lnx-lne)/(x-e)
分子分母求导得1/x-1/e,当x趋近于e是,Y趋近于0.故原式趋近于1.
3、根据绝对值性质,当x∈[-2,2]时,
f(x)=-x^2-3x+4,此时最大值为25/4,最小值为-6
当x∈(2,5]时,最小值为-6,最大值为0
故在[-2,5]区间内最大为25/4,最小为-6.
4、令f(x)=1/3x^2-x+tgx
则f'(x)=x^2+(tgx)^2
则在[0,π/2]内,f'(x)恒不小于0,故f(x)为增函数,且当f'(x)=0时取最小值,即x=0时最小为0,故在(0,π/2)内f(x)恒大于零,得证。
5、设内接时把L边分成x和L-x两段,则内接正方形的变长为根号下[x^2+(l-x)^2],则面积为x^2+(l-x)^2,其化简后为:S=2x^2-2Lx+L^2,x∈(0,L),当且仅当x=L/2时,S取得最小值。x=L/2,即正方形变长为L/根号2
6、留下的扇形圆心角为α,则做成的漏斗的底面圆周长为R(2π-α)则底面半径为r=R(2π-α)/2π,令α/2π=t则r=R(1-t),母线为R,则高为根号下(2R^2t-R^2t^2),所以V=1/3Sh=1/3πR^3(1-t)^2×根号下(2t-t^2),对t求导后令其等于零,当t=1-根号6/3时,最大,即α=2(1-根号6/3)π
7、y=ax^3+bx^2+cx+d
则y'=3ax^2+2bx+c
y''=6ax+2b
(1,-10)为拐点,其点也在曲线上,而且当x=1时,y''=0
即-10=a+b+c+d,6a+2b=0,
x=-2时有水平切线,即x=-2时,y'=0,即12a-4b+c=0
点(-2,44)即44=-8a+4b-2c+d
联立解得:a=1,b=-3,c=-12,d=4
即y=x^3-3x^2-12x+4
所有问题回答完毕,待鉴定
Huer1209
2008-11-12 · 超过21用户采纳过TA的回答
知道答主
回答量:84
采纳率:0%
帮助的人:63万
展开全部
我们也在做这个···呵呵···图书馆有些有答案的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风之刃100
2008-11-12 · TA获得超过455个赞
知道小有建树答主
回答量:196
采纳率:0%
帮助的人:0
展开全部
第一题有问题吧,a b c 应该有点范围什么的吧,第一题少条件
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
by...8@21cn.com
2008-11-12 · TA获得超过110个赞
知道答主
回答量:121
采纳率:0%
帮助的人:90.3万
展开全部
好简单啊!你不是不会做吧!这是课本上的题啊!你要是真的不会做 就给我发个邮件 tp4416@163.com
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
drqcha
2008-11-12 · TA获得超过397个赞
知道答主
回答量:234
采纳率:0%
帮助的人:0
展开全部
公式很多.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 5条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式