(1)已知数列{a n }的各项均为正数,前n项和为S n ,若S n = 1 4 (a n +1) 2 .①求{a n }
(1)已知数列{an}的各项均为正数,前n项和为Sn,若Sn=14(an+1)2.①求{an}的通项公式;②设m,k,p∈N*,m+p=2k,求证:1Sm+1Sp≥2Sk...
(1)已知数列{a n }的各项均为正数,前n项和为S n ,若S n = 1 4 (a n +1) 2 .①求{a n }的通项公式;②设m,k,p∈N * ,m+p=2k,求证: 1 S m + 1 S p ≥ 2 S k (2)若{a n }是等差数列,前n项和为T n ,求证:对任意n∈N * ,T n ,T n+1 ,T n+2 不能构成等比数列.
展开
雄0222
推荐于2016-05-07
·
超过51用户采纳过TA的回答
知道答主
回答量:103
采纳率:100%
帮助的人:101万
关注
(1)①由S n = ( a n +1 ) 2 ,可得 S n+1 = ( a n+1 +1 ) 2 , 两式相减得 a n+1 = ( a n+1 - a n )( a n+1 + a n +2) , 化为(a n+1 +a n )(a n+1 -a n -2)=0. ∵a n >0,∴a n+1 -a n -2=0,即a n+1 -a n =2. ∴数列{a n }是公差为2的等差数列. 又 a 1 = S 1 = ( a 1 +1 ) 2 ,化为 ( a 1 -1 ) 2 =0 ,解得a 1 =1. ∴a n =1+(n-1)×2=2n-1. ②由①知 S n = = n 2 , ∴ + - = + - = k 2 ( m 2 + p 2 )-2 m 2 p 2 | m 2 p 2 k 2 | , 又∵m,k,p∈N * ,m+p=2k,∴ k= . ∴ + - = ( ) 2 ( m 2 + p 2 )-2 m 2 p 2 | m 2 p 2 k 2 | ≥ ( ) 2 (2mp)-2 m 2 p 2 | m 2 p 2 k 2 | =0, ∴ + ≥ 成立. (2)由{a n }是等差数列,设公差为d, 假设存在m∈N * , T m ,T m+1 ,T m+2 构成等比数列.即 = T m ? T m+2 . ∴ ( T m + a m+1 ) 2 = T m ( T m + a m+1 + a m+2 ) , 化为dT m = ,即 + md a 1 + m(m+1) d 2 =0 (*) 若d=0,则a 1 =0,∴T m =T m+1 =T m+2 =0,这与 T m ,T m+1 ,T m+2 构成等比数列矛盾. 若d≠0,要使(*)式中的首项a 1 存在,必须△≥0, 然而△=m 2 d 2 -2m(m+1)d 2 =-(m 2 +2m)d 2 <0,矛盾. 综上所述,对任意n∈N * ,T n ,T n+1 ,T n+2 不能构成等比数列. |
收起
为你推荐: