狄利克雷函数的周期性怎么解释?

 我来答
小林学长123
2021-09-24 · 专注于分享数码相关知识
小林学长123
采纳数:550 获赞数:507806

向TA提问 私信TA
展开全部

狄利克雷函数的周期性:狄利克雷函数即f(x)=1(当x为有理数);f(x)=0(当x为无理数);而周期函数的定义是对任意x,若f(x)=f(x+T),则f(x)是周期为T的周期函数。

显然,取T为任意一个确定的有理数,则当x是有理数时f(x)=1,且x+T是有理数,故f(x+T)=1,即f(x)=f(x+T);当x是无理数时,f(x)=0,且x+T是无理数,故有f(x+T)=0,即f(x)=f(x+T)。综上,狄利克雷函数是周期函数,其周期可以是任意个有理数,所以没有最小正周期。

狄利克雷函数

狄利克雷函数是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。这是一个处处不连续的可测函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式