一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=5 2 -3 2 ,16就是一个“
一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52-32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个...
一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=5 2 -3 2 ,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由.
展开
2个回答
展开全部
1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1) 2 -k 2 (k=1,2,…).所以大于1的奇正整数都是“智慧数”. 对于被4整除的偶数4k,有4k=(k+1) 2 -(k-1) 2 (k=2,3,…). 即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”. 对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x 2 -y 2 =(x+y)(x-y),其中x,y为正整数, 当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除; 当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾. 所以不存在自然数x,y使得x 2 -y 2 =4k+2.即形如4k+2的数均不为“智慧数”. 因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”. 因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”, 注意到2666不是“智慧数”, 因此2667是第1998个“智慧数”, 即第1998个“智慧数”是2667. |
展开全部
1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1) 2 -k 2 (k=1,2,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1) 2 -(k-1) 2 (k=2,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x 2 -y 2 =(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾.
所以不存在自然数x,y使得x 2 -y 2 =4k+2.即形如4k+2的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,
注意到2666不是“智慧数”,
因此2667是第1998个“智慧数”,
即第1998个“智慧数”是2667
对于被4整除的偶数4k,有4k=(k+1) 2 -(k-1) 2 (k=2,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x 2 -y 2 =(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾.
所以不存在自然数x,y使得x 2 -y 2 =4k+2.即形如4k+2的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,
注意到2666不是“智慧数”,
因此2667是第1998个“智慧数”,
即第1998个“智慧数”是2667
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询