一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=5 2 -3 2 ,16就是一个“

一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52-32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个... 一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=5 2 -3 2 ,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由. 展开
 我来答
我是小特73
推荐于2016-12-01 · 超过57用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:55.7万
展开全部
1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1) 2 -k 2 (k=1,2,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1) 2 -(k-1) 2 (k=2,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x 2 -y 2 =(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾.
所以不存在自然数x,y使得x 2 -y 2 =4k+2.即形如4k+2的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,
注意到2666不是“智慧数”,
因此2667是第1998个“智慧数”,
即第1998个“智慧数”是2667.

百度网友08dbae0
2020-01-08
知道答主
回答量:8
采纳率:0%
帮助的人:4670
展开全部
1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1) 2 -k 2 (k=1,2,…).所以大于1的奇正整数都是“智慧数”.
对于被4整除的偶数4k,有4k=(k+1) 2 -(k-1) 2 (k=2,3,…).
即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x 2 -y 2 =(x+y)(x-y),其中x,y为正整数,
当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除;
当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾.
所以不存在自然数x,y使得x 2 -y 2 =4k+2.即形如4k+2的数均不为“智慧数”.
因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,
注意到2666不是“智慧数”,
因此2667是第1998个“智慧数”,
即第1998个“智慧数”是2667
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式