二元一次方程的解法以及注意事项和关于这个方程的一切,说清楚。拜托求解

 我来答
匿名用户
推荐于2016-03-12
展开全部
含有相同未知数的两个一次方程(或者一个二元一次方程和一元一次方程)联立起来,就组成了二元一次方程组。二元一次方程定义:一个含有两个未知数,并且未知项的指数都是1的整式方程,叫二元一次方程(linear equation of two unknowns)。 二元一次方程组定义:由两个二元一次方程组[1]成的方程组,叫二元一次方程组(system of linear equation of two unknowns)。 二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。 一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

二元一次方程组(y=1 x=1)加减法:将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决。代入法:通过“代入”消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。 1、消元方法

“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。

消元方法一般分为:

代入消元法,简称:代入法(常用)

加减消元法,简称:加减法(常用)

顺序消元法,(这种方法不常用)

整体代入法。(不常用)

以下是消元方法的举例:

{x-y=3 ①

{3x-8y=4②

由①得x=y+3③

③代入②得

3(y+3)-8y=4

解得y=1

所以x=4

则:这个二元一次方程组的解为

{x=4

{y=1

实用方法

{13x+14y=41

{14x+13y=40

27x+27y=81

y-x=1

27y=54

y=2

x=1

y=2

把y=2代入(3)得

即x=1

所以:x=1,y=2

最后 x=1 , y=2, 解出来

特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

2、换元法

是二元一次方程的另一种方法,就是说把一个方程用其他未知数表示,再带入另一个方程中

如:

x+y=590

y+20=90%x

代入后就是:

x+90%x-20=590

例2:(x+5)+(y-4)=8

(x+5)-(y-4)=4

令x+5=m,y-4=n

二元一次方程
原方程可写为

m+n=8

m-n=4

解得m=6,n=2

所以x+5=6,y-4=2

所以x=1,y=6

特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

3、参数换元

例3, x:y=1:4

5x+6y=29

令x=t,y=4t

方程2可写为:5t+24t=29

29t=29

t=1

所以x=1,y=4

此外,还有代入法可做题。

x+y=5

3x+7y=-1

解:x=5-y

3(5-y)+7y=-1

15-3y+7y=-1

4y=-16

y=-4

得:x=9

y=-4

如果关于x,y的二元一次方程组3x-ay=16,的解是x=7你是否可以通过观察、研究,用简便方法求出下列关于

2x+by=15 y=1

x,y的方程组的解?

(1)方程组:3(x+y)-a(x-y)=16①

2(x+y)+b(x-y)=15②

(2)方程组:3(x-2y)÷2-a÷3y=16①

(x-2y)+b÷3y=15②

4、加减-代入混合使用的方法

  例1,{13x+14y=41 (1)

  {14x+13y=40 (2)

  解:(2)-(1)得

  x-y=-1

  即x=y-1 (3)

  把(3)代入(1)得

  13(y-1)+14y=41

  所以13y-13+14y=41

  27y=54

  y=2

  把y=2代入(3)得

  即x=1

  所以:x=1,y=2

  最后 x=1 , y=2, 解出来

  特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。
匿名用户
2014-12-12
展开全部

 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-12-12
展开全部

 

追问
我说的二元一次啊
我说的二元一次啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-12-12
展开全部
老师要讲几节课才讲的完的内容,我们打字的话工作量太大。建议楼主去买本教辅书吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式