
设函数f(x)=(x-a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使
设函数f(x)=(x-a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立...
设函数f(x)=(x-a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.
展开
1个回答
展开全部
(I)求导得f′(x)=2(x-a)lnx+
=(x-a)(2lnx+1-
),
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,a=e或a=3e符合题意,
所以a=e,或a=3e
(II)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立
②当1<x≤3e时,,由题意,首先有f(3e)=(3e-a)2ln3e≤4e2,
解得3e?
≤a≤3e+
由(I)知f′(x)=2(x-a)lnx+
=(x-a)(2lnx+1-
),
令h(x)=2lnx+1-
,则h(1)=1-a<0,
h(a)=2lna>0且h(3e)=2ln3e+1-
≥2ln3e+1-
=2(ln3e-
)>0
又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0
则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,
当x∈(x0,a)时,f′(x)<0,
当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,
在(x0,a)内是减函数,在(a,+∞)内是增函数
所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有
(x?a)2 |
x |
a |
x |
因为x=e是f(x)的极值点,
所以f′(e)=0
解得a=e或a=3e.
经检验,a=e或a=3e符合题意,
所以a=e,或a=3e
(II)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立
②当1<x≤3e时,,由题意,首先有f(3e)=(3e-a)2ln3e≤4e2,
解得3e?
2e | ||
|
2e | ||
|
由(I)知f′(x)=2(x-a)lnx+
(x?a)2 |
x |
a |
x |
令h(x)=2lnx+1-
a |
x |
h(a)=2lna>0且h(3e)=2ln3e+1-
a |
3e |
3e+
| ||||
3e |
1 | ||
3
|
又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0
则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,
当x∈(x0,a)时,f′(x)<0,
当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,
在(x0,a)内是减函数,在(a,+∞)内是增函数
所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|