如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,
如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)...
如图,点A、B在直线MN上,AB=11cm,⊙A、⊙B的半径均为1cm,⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0),当点A出发后3秒、113秒、11秒、133秒、113秒、11秒、13s两圆相切.
展开
1个回答
展开全部
解答:解:设⊙A运动ts时,A,B之间的距离为d厘米,则
当0≤t≤5.5时,点A在点B的左侧,此时函数表达式为d=11-2t,
当t>5.5时,点A在点B的右侧,圆心距等于点A走的路程减去11,函数表达式为d=2t-11;
分四种情况考虑:
两圆相切可分为如下四种情况:
①当两圆第一次外切,由题意,
可得11-2t=1+1+t,t=3;
②当两圆第一次内切,由题意,
可得11-2t=1+t-1,t=
;
③当两圆第二次内切,由题意,可得2t-11=1+t-1,t=11;
④当两圆第二次外切,由题意,可得2t-11=1+t+1,t=13.
所以,点A出发后3秒、
秒、11秒、13秒时两圆相切.
故答案为3秒、
秒、11秒、13.
当0≤t≤5.5时,点A在点B的左侧,此时函数表达式为d=11-2t,
当t>5.5时,点A在点B的右侧,圆心距等于点A走的路程减去11,函数表达式为d=2t-11;
分四种情况考虑:
两圆相切可分为如下四种情况:
①当两圆第一次外切,由题意,
可得11-2t=1+1+t,t=3;
②当两圆第一次内切,由题意,
可得11-2t=1+t-1,t=
11 |
3 |
③当两圆第二次内切,由题意,可得2t-11=1+t-1,t=11;
④当两圆第二次外切,由题意,可得2t-11=1+t+1,t=13.
所以,点A出发后3秒、
11 |
3 |
故答案为3秒、
11 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询