如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、A

如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG,则下列结论:①△ABD≌△CAG,②AD... 如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG,则下列结论:①△ABD≌△CAG,②AD⊥AG,其中正确的结论是(  )A.①正确B.②正确C.①②都正确D.①②都不正确 展开
 我来答
34534167
2015-01-07 · TA获得超过143个赞
知道答主
回答量:142
采纳率:83%
帮助的人:71.2万
展开全部
解答:证明:①∵BE、CF分别是AC、AB两边上的高,
∴∠AFC=∠AEB=90°(垂直定义),
∴∠ACG=∠DBA(同角的余角相等),
∴在△ABD与△GCA中,
BD=AC
∠ACG=∠DBA
AB=GC

∴△ABD≌△GCA(SAS);
故①正确;

②∵由①知,△ABD≌△GCA,
∴∠AGC=∠DAB,
∵∠CGA+∠GAF=90°,
∴∠GAF+∠BAD=90°,即AD⊥AG.
故②正确.
综上所述,正确的结论是①②.
故选:C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式