已知:如图,△ABC中,AC=BC,∠ACB=90°,将线段CB绕点C旋转60°得到CB′,∠ACB的平分线CD交直线AB′于
已知:如图,△ABC中,AC=BC,∠ACB=90°,将线段CB绕点C旋转60°得到CB′,∠ACB的平分线CD交直线AB′于点D,连接DB,在射线DB′上截取DM=DC...
已知:如图,△ABC中,AC=BC,∠ACB=90°,将线段CB绕点C旋转60°得到CB′,∠ACB的平分线CD交直线AB′于点D,连接DB,在射线DB′上截取DM=DC.(1)在图1中证明:MB′=DB;(2)若AC=6,分别在图1、图2中,求出AB′的长(直接写出结果).
展开
1个回答
展开全部
(1)证明:在图1中,连接CM,
∵线段CB绕点C旋转60°得到CB′,
∴CB=CB′,∠BCB′=60°,
∵AC=BC,∠ACB=90°,
∴CA=CB′,∠ACB′=90°+60°=150°,
∴∠CAB′=∠B′=15°,
∵CD平分∠ACB,
∴∠ACD=∠BCD=45°.
∴∠CDM=∠ACD+∠CAD=60°,
∵DM=DC,
∴△CDM是等边三角形,
∴CM=CD,∠DCM=60°,
∴∠B′CM=∠ACB′-∠ACD-∠DCM=45°,
∴∠B′CM=∠BCD,
在△CMB′和△CDB中,
,
∴△CBM′≌△CDB(SAS),
∴M′B=BD;
(2)解:在图1中,作B′H⊥AC交AC的延长线于H,
∵∠ACB′=150°,
∴∠B′CH=30°,
在Rt△B′CH中,CB′=AC=
,
∴B′H=
CB′=
,
CH=
B′H=
,
∴AH=
+
∵线段CB绕点C旋转60°得到CB′,
∴CB=CB′,∠BCB′=60°,
∵AC=BC,∠ACB=90°,
∴CA=CB′,∠ACB′=90°+60°=150°,
∴∠CAB′=∠B′=15°,
∵CD平分∠ACB,
∴∠ACD=∠BCD=45°.
∴∠CDM=∠ACD+∠CAD=60°,
∵DM=DC,
∴△CDM是等边三角形,
∴CM=CD,∠DCM=60°,
∴∠B′CM=∠ACB′-∠ACD-∠DCM=45°,
∴∠B′CM=∠BCD,
在△CMB′和△CDB中,
|
∴△CBM′≌△CDB(SAS),
∴M′B=BD;
(2)解:在图1中,作B′H⊥AC交AC的延长线于H,
∵∠ACB′=150°,
∴∠B′CH=30°,
在Rt△B′CH中,CB′=AC=
6 |
∴B′H=
1 |
2 |
| ||
2 |
CH=
3 |
3
| ||
2 |
∴AH=
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载